Skip to main content
Log in

\(L^p\)-Boundedness of Stein’s Square Functions Associated with Fourier–Bessel Expansions

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we prove \(L^p\) estimates for Stein’s square functions associated with Fourier–Bessel expansions. Furthermore, we prove transference results for square functions from Fourier–Bessel series to Hankel transforms. Actually, these are transference results for vector-valued multipliers from discrete to continuous in the Bessel setting. As a consequence, we deduce the sharpness of the range of p for the \(L^p\)-boundedness of Fourier–Bessel Stein’s square functions from the corresponding property for Hankel–Stein square functions. Finally, we deduce \(L^p\) estimates for Fourier–Bessel multipliers from that ones we have got for our Stein square functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems. Monographs in Mathematics, vol. 96. Birkhäuser, Basel (2001)

  2. Betancor, J.J., Stempak, K.: Relating multipliers and transplantation for Fourier-Bessel expansions and Hankel transform. Tohoku Math. J. 53(1), 109–129 (2001)

  3. Bourgain, J.: Besicovitch type maximal operators and applications to Fourier analysis. Geom. Funct. Anal. 1(2), 147–187 (1991)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J.: On the restriction and multiplier problems in \({\bf R}^3\). In: Geometric aspects of functional analysis (1989–1990), vol. 1469 of Lecture Notes in Math., pp. 179–191. Springer, Berlin (1991)

  5. Bourgain, J., Guth, L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21(6), 1239–1295 (2011)

    Article  MathSciNet  Google Scholar 

  6. Carbery, A.: The boundedness of the maximal Bochner-Riesz operator on \(L^{4}({ R}^{2})\). Duke Math. J. 50(2), 409–416 (1983)

    Article  MathSciNet  Google Scholar 

  7. Carbery, A. Radial., Fourier multipliers and associated maximal functions. In: Recent progress in Fourier analysis (El Escorial: vol. 111 of North-Holland Math. Stud., vol. 1985, pp. 49–56. North-Holland, Amsterdam (1983)

  8. Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Studia Math. 44, 287–299 (1972) (errata insert)

  9. Carro, M.J., Domingo-Salazar, C.: Stein’s square function \(G_\alpha \) and sparse operators. J. Geom. Anal. 27(2), 1624–1635 (2017)

    Article  MathSciNet  Google Scholar 

  10. Chen, C.-P., Fan, D., Sato, S.: DeLeeuw’s theorem on Littlewood-Paley functions. Nagoya Math. J. 165, 23–42 (2002)

    Article  MathSciNet  Google Scholar 

  11. Chen, P., Duong, X.T., Yan, L.: \(L^p\)-bounds for Stein’s square functions associated to operators and applications to spectral multipliers. J. Math. Soc. Jpn. 65(2), 389–409 (2013)

    Article  Google Scholar 

  12. Chen, P., Lee, S., Sikora, A., Yan, L.: Bounds on the maximal Bochner-Riesz means for elliptic operators. Trans. Am. Math. Soc. 373, 3793–3828 (2020)

    Article  MathSciNet  Google Scholar 

  13. Christ, M.: On almost everywhere convergence of Bochner-Riesz means in higher dimensions. Proc. Am. Math. Soc. 95(1), 16–20 (1985)

    Article  MathSciNet  Google Scholar 

  14. Ciaurri, O., Roncal, L.: The Bochner-Riesz means for Fourier-Bessel expansions. J. Funct. Anal. 228(1), 89–113 (2005)

    Article  MathSciNet  Google Scholar 

  15. Ciaurri, O., Roncal, L.: Weighted inequalities for the Bochner–Riesz means related to the Fourier-Bessel expansions. J. Math. Anal. Appl. 329(2), 1170–1180 (2007)

    Article  MathSciNet  Google Scholar 

  16. Ciaurri, O., Roncal, L.: The Bochner-Riesz means for Fourier-Bessel expansions: norm inequalities for the maximal operator and almost everywhere convergence. J. Approx. Theory 167, 121–146 (2013)

    Article  MathSciNet  Google Scholar 

  17. Cleanthous, G., Georgiadis, A.G.: Riesz means via heat kernel bounds. Bull. Hellenic Math. Soc. 60, 1–10 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196(2), 443–485 (2002)

    Article  MathSciNet  Google Scholar 

  19. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of integral transforms. Vol. II. McGraw-Hill Book Company, Inc., New York, Toronto, London (1954) (Based, in part, on notes left by Harry Bateman)

  20. Fefferman, C.: Inequalities for strongly singular convolution operators. Acta Math. 124, 9–36 (1970)

    Article  MathSciNet  Google Scholar 

  21. Hochstadt, H.: The mean convergence of Fourier-Bessel series. SIAM Rev. 9, 211–218 (1967)

    Article  MathSciNet  Google Scholar 

  22. Igari, S., Kuratsubo, S.: A sufficient condition for \(L^{p}\)-multipliers. Pac. J. Math. 38, 85–88 (1971)

    Article  Google Scholar 

  23. Kadets, V., Shumyatskiy, B., Shvidkoy, R., Tseytlin, L., Zheltukhin, K.: Some remarks on vector-valued integration. Mat. Fiz. Anal. Geom. 9(1), 48–65 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Kim, J.: Endpoint bounds of square functions associated with Hankel multipliers. Studia Math. 228(2), 123–151 (2015)

    Article  MathSciNet  Google Scholar 

  25. Lebedev, N.N.: Special Functions and Their Applications. Dover Publications Inc, New York (1972) (revised edition, translated from the Russian and edited by Richard A. Unabridged and corrected republication, Silverman)

  26. Lee, S.: Square function estimates for the Bochner–Riesz means. Anal. PDE 11(6), 1535–1586 (2018)

    Article  MathSciNet  Google Scholar 

  27. Lee, S., Rogers, K.M., Seeger, A.: Improved bounds for Stein’s square functions. Proc. Lond. Math. Soc. 104(6), 1198–1234 (2012)

  28. Lee, S., Rogers, K.M., Seeger, A.: Square functions and maximal operators associated with radial Fourier multipliers. In: Advances in Analysis: the Legacy of Elias M. Stein, vol. 50 of Princeton Math. Ser., pp. 273–302. Princeton University Press, Princeton (2014)

  29. Małecki, J., Serafin, G., Zorawik, T.: Fourier-Bessel heat kernel estimates. J. Math. Anal. Appl. 439(1), 91–102 (2016)

  30. Muckenhoupt, B.: Hardy’s inequality with weights. Stud. Math. 44(1), 31–38 (1972)

    Article  MathSciNet  Google Scholar 

  31. Navas, E., Urbina, W.O.: A transference result of the \(L^p\)-continuity of the Jacobi Littlewood-Paley \(g\)-function to the Gaussian and Laguerre Littlewood-Paley \(g\)-function. J. Funct. Spaces, 29 (2018) (Art. ID 9304964)

  32. Nowak, A., Roncal, L.: Sharp heat kernel estimates in the Fourier-Bessel setting for a continuous range of the type parameter. Acta Math. Sin. (Engl. Ser.) 30(3), 437–444 (2014)

  33. Nowak, A., Stempak, K.: Weighted estimates for the Hankel transform transplantation operator. Tohoku Math. J. 58(2), 277–301 (2006)

  34. Seeger, A.: On quasiradial Fourier multipliers and their maximal functions. J. Reine Angew. Math. 370, 61–73 (1986)

    MathSciNet  MATH  Google Scholar 

  35. Sikora, A., Yan, L., Yao, X.: Spectral multipliers, Bochner–Riesz means and uniform Sobolev inequalities for elliptic operators. Int. Math. Res. Not. IMRN 10, 3070–3121 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    Article  MathSciNet  Google Scholar 

  37. Stein, E.M.: Localization and summability of multiple Fourier series. Acta Math. 100, 93–147 (1958)

    Article  MathSciNet  Google Scholar 

  38. Sunouchi, G.-I.: On functions regular in a half-plane. Tohoku Math. J. 9(2), 37–44 (1957)

  39. Sunouchi, G.-I.: On the Littlewood-Paley function \(g^*\) of multiple Fourier integrals and Hankel multiplier transformations. Tôhoku Math. J. 19(2), 496–511 (1967)

  40. Sunouchi, G.-I.: On the functions of Littlewood–Paley and Marcinkiewicz. Tohoku Math. J. 36(4), 505–519 (1984)

  41. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, New York (1966)

  42. Wolfram-Research, I.: Function.wolfram (2020). http://functions.wolfram.com/07.22.06.0012.01

Download references

Acknowledgements

We would like to express our gratitude to the referee for his/her comments. The authors are partially supported by PID2019-106093GB-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Rodríguez-Mesa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, V., Betancor, J.J., Dalmasso, E. et al. \(L^p\)-Boundedness of Stein’s Square Functions Associated with Fourier–Bessel Expansions. Mediterr. J. Math. 18, 177 (2021). https://doi.org/10.1007/s00009-021-01800-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01800-x

Keywords

Mathematics Subject Classification

Navigation