Skip to main content
Log in

Convergence in Phi-Variation and Rate of Approximation for Nonlinear Integral Operators Using Summability Process

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We investigate the approximation properties of nonlinear integral operators of the convolution type. In this approximation, we use functions of bounded variation based on the appropriate functionals. To get more general results, we consider Bell-type summability methods in the approximation. Moreover, we examine the rate of approximation. Then, using summability methods, we obtain a characterization for absolute continuity. Our examples at the end of the paper clearly demonstrate why we used summability methods rather than convergence in the conventional sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Angeloni, L.: Approximation results with respect to multidimensional \(\varphi \)-variation for nonlinear integral operators. Z. Anal. Anwend. 32(1), 103–128 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Angeloni, L., Vinti, G.: Convergence in variation and rate of approximation for nonlinear integral operators of convolution type. Results Math. 49(1–2), 1–23 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Angeloni, L., Vinti, G.: Approximation by means of nonlinear integral operators in the space of functions with bounded \(\varphi \)-variation. Differ. Integral Equ. 20, 339–360 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Angeloni, L., Vinti, G.: Convergence and rate of approximation for linear integral operators in \(\text{ BV}^{\varphi }\)-spaces in multidimensional setting. J. Math. Anal. Appl. 349, 317–334 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Angeloni, L., Vinti, G.: Errata corrige to: approximation by means of nonlinear integral operators in the space of functions with bounded \(\varphi \)-variation. Differ. Integral Equ. 23, 795–799 (2010)

    MATH  Google Scholar 

  6. Angeloni, L., Vinti, G.: Convergence and rate of approximation in \(BV_{\varphi }({\mathbb{R}}_{N}^{+}) \) for class of Mellin integral operators. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni 25(3), 217–232 (2014)

    MATH  Google Scholar 

  7. Angeloni, L., Vinti, G.: A concept of absolute continuity and its characterization in terms of convergence in variation. Math. Nachr. 289(16), 1986–1994 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Aslan, İ., Duman, O.: A summability process on Baskakov-type approximation. Period. Math. Hungar. 72(2), 186–199 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Aslan, I., Duman, O.: Summability on Mellin-type nonlinear integral operators. Integral Transform. Spec. Funct. 30(6), 492–511 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Aslan, I., Duman, O.: Approximation by nonlinear integral operators via summability process. Math. Nachr. 293(3), 430–448 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Bardaro, C., Butzer, P.L., Stens, R.L., Vinti, G.: Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals. Analysis 23, 299–340 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications, vol. 9. New York, Berlin (2003)

    MATH  Google Scholar 

  13. Bardaro, C., Sciamannini, S., Vinti, G.: Convergence in \(\text{ BV}_{\varphi }\) by nonlinear Mellin-type convolution operators. Funct. Approx. Comment. Math. 29, 17–28 (2001)

    MathSciNet  Google Scholar 

  14. Bell, H.T.: \({\cal{A}}\)-summability, Dissertation. Lehigh University, Bethlehem (1971)

    Google Scholar 

  15. Bell, H.T.: Order summability and almost convergence. Proc. Am. Math. Soc. 38, 548–552 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Bertero, M., Brianzi, P., Pike, E.: Super-resolution in confocal scanning microscopy. Inverse Probl. 3, 195–212 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Bose, N., Boo, K.: High-resolution image reconstruction with multisensors. Int. J. Imaging Syst. Technol. 9, 294–304 (1998)

    Google Scholar 

  18. Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation. Volume 1: One-Dimensional Theory. Pure Appl. Math. Vol. 40 (Academic Press, New York-London, 1971)

  19. Dawson, D.F.: Matrix summability over certain classes of sequences ordered with respect to rate of convergence, Pacific. J. Math. 24, 51–56 (1968)

    MathSciNet  MATH  Google Scholar 

  20. Ford, N.J., Edwards, J.T., Frischmuth, K.: Qualitative Behaviour of Approximate Solutions of Some Volterra Integral Equations with Non-Lipschitz Nonlinearity, Numerical Analysis Report 310. Manchester Centre for Computational Mathematics, Manchester (1997)

  21. Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, Boston (1993)

    Google Scholar 

  22. Hansen, P.C.: Deconvolution and regularization with Topelitz matrices. Numer. Algorithms 29, 323–328 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Hardy, G.H.: Divergent series. Oxford Univ. Press, London (1949)

    MATH  Google Scholar 

  24. Jordan, C.: Sur la serie de Fourier. C. R. Acad. Sci. Paris 92, 228–230 (1881)

    MATH  Google Scholar 

  25. Jurkat, W.B., Peyerimhoff, A.: Fourier effectiveness and order summability. J. Approx. Theory 4, 231–244 (1971)

    MathSciNet  MATH  Google Scholar 

  26. Jurkat, W.B., Peyerimhoff, A.: Inclusion theorems and order summability. J. Approx. Theory 4, 245–262 (1971)

    MathSciNet  MATH  Google Scholar 

  27. Keagy, T.A., Ford, W.F.: Acceleration by subsequence transformations. Pac. J. Math. 132(2), 357–362 (1988)

    MathSciNet  MATH  Google Scholar 

  28. Kress, R.: Linear Integral Equations. Springer, Berlin (1989)

    MATH  Google Scholar 

  29. Küçük, N., Duman, O.: Summability methods in weighted approximation to derivatives of functions. Serdica Math. J. 41(4), 355–368 (2015)

    MathSciNet  Google Scholar 

  30. Laczkovich, M., Sos, V.T.: Functions of bounded variation. In: Real Analysis, Springer, New York, 399-406 (2015)

  31. Lorentz, G.G.: A contribution to the theory of divergent sequences. Acta Math. 80, 167–190 (1948)

    MathSciNet  MATH  Google Scholar 

  32. Love, E.R., Young, L.C.: Sur une classe de fonctionnelles linéaires. Fund. Math. 28, 243–257 (1937)

    MATH  Google Scholar 

  33. Lu, Y., Shen, L., Xu, Y.: Integral equation models for image restoration: high accuracy methods and fast algorithms. Inverse Probl. 26, 32 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Maligranda, L., Orlicz, W.: On some properties of functions of generalized variation. Monatsh Math. 104, 53–65 (1987)

    MathSciNet  MATH  Google Scholar 

  35. Maligranda, L.: On interpolation of nonlinear operators. Comment. Math. Prace. Mat. 28(2), 253–275 (1989)

    MathSciNet  MATH  Google Scholar 

  36. Matuszewska, W., Orlicz, W.: On property \(\text{ B}_{{1}}\) for functions of bounded \(\varphi \)-variation. Bull. Pol. Acad. Sci. Math. 35(1–2), 57–69 (1987)

    MATH  Google Scholar 

  37. Musielak, J., Orlicz, W.: On generalized variations (I). Studia Math. 18, 11–41 (1959)

    MathSciNet  MATH  Google Scholar 

  38. Mohapatra, R.N.: Quantitative results on almost convergence of a sequence of positive linear operators. J. Approx. Theory 20, 239–250 (1977)

    MathSciNet  MATH  Google Scholar 

  39. Ng Michael, K.: Circulant preconditioners for convolution-like integral equations with higher-order quadrature rules. Electron. Trans. Numer. Anal. 5, 18–28 (1997)

    MathSciNet  MATH  Google Scholar 

  40. Radó, T.: Length and Area, American Mathematical Society Colloquium Publications, vol. 30. American Mathematical Society, New York (1948)

    Google Scholar 

  41. Smith, D.A., Ford, W.F.: Acceleration of linear and logarithmical convergence, Siam. J. Numer. Anal. 16, 223–240 (1979)

    MathSciNet  Google Scholar 

  42. Swetits, J.J.: On summability and positive linear operators. J. Approx. Theory 25, 186–188 (1979)

    MathSciNet  MATH  Google Scholar 

  43. Vinti, G.: A general approximation result for nonlinear integral operators and applications to signal processing. Appl. Anal. 79(1–2), 217–238 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Wiener, N.: The quadratic variation of a function and its Fourier coefficients. Mass. J. Math. 3, 72–94 (1924)

    MATH  Google Scholar 

  45. Wimp, J.: Sequence transformations and their applications. Academic Press, New York (1981)

    MATH  Google Scholar 

  46. Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67, 251–282 (1936)

    MathSciNet  MATH  Google Scholar 

  47. Young, L.C.: Sur une généralisation de la notion de variation de puissance \(\text{ p}^{ieme}\) bornée au sens de M. Wiener, et sur la convergence des séries de Fourier. C. R. Acad. Sci. Paris 204, 470–472 (1937)

    MATH  Google Scholar 

  48. Ziemer, W.P.: Weakly differentiable functions: Sobolev spaces and functions of bounded variation. Springer Science & Business Media 120, (2012)

Download references

Acknowledgements

The author would like to thank reviewer(s) for insightful comments and reading the manuscript carefully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Aslan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, İ. Convergence in Phi-Variation and Rate of Approximation for Nonlinear Integral Operators Using Summability Process. Mediterr. J. Math. 18, 5 (2021). https://doi.org/10.1007/s00009-020-01623-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01623-2

Keywords

Mathematics Subject Classification

Navigation