Skip to main content
Log in

Neural Network Solution of Single-Delay Differential Equations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Following the ideas of Lagaris et al. (IEEE Trans Neural Netw 9(5):987–1000, 1998), we use Neural Networks to solve approximatively first-order single-delay differential equations and systems. We apply the proposed novel methodology to various problems with constant delay terms and the resulted continuous solutions prove to be very efficient. This is the case not only for nonstiff problems but for equations with stiffness too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lagaris, I.E., Likas, Fotiadis, A, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)

    Google Scholar 

  2. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second edn. Springer, Berlin Heidelberg (1993)

    MATH  Google Scholar 

  3. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second Revised edn. Springer, Berlin Heidelberg (1996)

    MATH  Google Scholar 

  4. Butcher, J.C.: Numerical Methods for Ordinary Differnetial Equations, 3rd edn. Wiley, Hoboken (2016)

    Google Scholar 

  5. Simos, T.E.: High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209, 137–151 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Simos, T.E.: Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22, 1616–1621 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Simos, T.E.: Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110, 1331–1352 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Monovasilis, Th, Kalogiratou, Z., Simos, T.E.: A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209, 91–96 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Tsitouras, Ch., Famelis, I.Th, Simos, T.E.: On modified Runge–Kutta trees and methods. Comput. Math. Appl. 62, 2101–2111 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Tsitouras, Ch., Famelis, I.Th, Simos, T.E.: Phase-fitted Runge–Kutta pairs of orders 8(7). J. Comput. Appl. Math. 321, 226–231 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Simos, T.E., Tsitouras, Ch.: Fitted modifications of classical Runge–Kutta pairs of orders 5(4). Math. Meth. Appl. Sci. 41, 4549–4559 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Simos, T.E., Tsitouras, Ch.: Fitted modifications of Runge–Kutta pairs of orders 6(5). Math. Meth. Appl. Sci. 41, 6184–6194 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Kalogiratou, Z., Monovasilis, Th, Simos, T.E.: New modified Runge–Kutta–Nystrom methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60, 1639–1647 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Monovasilis, Th, Kalogiratou, Z., Simos, T.E.: Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inf. Sci. 7, 81–85 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Monovasilis, T., Kalogiratou, Z., Simos, T.E.: Construction of exponentially fitted symplectic Runge–Kutta–Nyström methods from partitioned Runge–Kutta methods. Mediterr. J. Math. 13, 2271–2285 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Papadopoulos, D.F., Simos, T.E.: A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7, 433–437 (2013)

    MathSciNet  Google Scholar 

  17. Simos, T.E.: Multistage symmetric two-step P-stable method with vanished phase-lag and its first, second and third derivatives. Appl. Comput. Math. 14, 296–315 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Hui, Fei, Simos, T.E.: Four stages symmetric two-step P-stable method with vanished phase-lag and its first, second, third and fourth derivatives. Appl. Comput. Math. 15, 220–238 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Monovasilis, T., Kalogiratou, Z., Ramos, Higinio, Simos, T.E.: Modified two-step hybrid methods for the numerical integration of oscillatory problems. Math. Methods Appl. Sci. 40, 5286–5294 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Simos, T.E., Tsitouras, Ch.: Evolutionary generation of high order, explicit, two step methods for second order linear IVPs. Math. Meth. Appl. Sci. 40, 6276–6284 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Simos, T.E., Tsitouras, Ch.: A new family of 7 stages, eighth-order explicit Numerov-type methods. Math. Meth. Appl. Sci. 40, 7867–7878 (2017)

    MATH  Google Scholar 

  22. Simos, T.E., Tsitouras, Ch., Famelis, I.Th: Explicit numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16, 89–113 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Tsitouras, Ch., Simos, T.E.: On ninth order, explicit Numerov type methods with constant coefficients. Mediterr. J. Math. 15 (2018) Article No:46

  24. Alolyan, I., Simos, T.E.: A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62, 3756–3774 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Simos, T.E.: New stable closed newton-cotes trigonometrically fitted formulae for long-time integration. Abstract Appl. Anal. Volume 2012, Article ID 182536, 15 (2012). https://doi.org/10.1155/2012/182536

    MathSciNet  MATH  Google Scholar 

  26. Bellen, A., Zennaro, A.: Numerical Methods for Delay Differential Equations. Oxford University Press, New York (2003)

    MATH  Google Scholar 

  27. Baker, C.T.H., Bocharov, G.A., Rihan, F.A.: A report on the use of delay differential equations in numerical modelling in the biosciences. Num. Anal. Rep. 343 (1999), Un. of Manchester/UMIST

  28. Bocharov, G.A., Rihan, F.A.: Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math. 125(1–2), 183–199 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Rihan, F.A., Abdelrahman, D.H., Al-Maskari, F., Ibrahim, F., Abdeen, M.A.: Delay differential model for tumour-immune response with chemoimmunotherapy and optimal control. Comput. Math. Methods Med. Article ID 982978, 15 (2014)

  30. Baker, C.T.H., Bocharov, G.A., Paul, C.A.H., Rihan, F.A.: Modelling and analysis of time-lags in some basic patterns of cell proliferation. J. Math. Biol. 37(4), 341–371 (1998)

    MATH  Google Scholar 

  31. Lakshmanan, S., Rihan, F.A., Rakkiyappan, R., Park, J.H.: Stability analysis of the differential genetic regulatory networks model with time-varying delays and Markovian jumping parameters. Nonlinear Anal. Hybrid Syst. 14, 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Driver, R.D.: Ordinary and Delay Differential Equations. Springer, New York (1977)

    MATH  Google Scholar 

  33. Hale, J.: Theory of Functional Differential Equations. Springer, Berlin Heidelberg (1977)

    MATH  Google Scholar 

  34. Baker, C.T.H., Paul, C.A.H., Wille, D.R.: Issues in the numerical solution of evolutionary delay differential equations. Num. Anal. Report 248 (1994), Un. of Manchester/UMIST

  35. Higham, D.J., Famelis, I.Th: Equilibrium states of adaptive algorithms for delay differential equations. J Comp. App. Math. 58, 151–169 (1995)

    MathSciNet  MATH  Google Scholar 

  36. Oberle, H.J., Pesch, H.J.: Numerical treatment of delay differential equations by hermite interpolation. Numer. Math. 37, 235–255 (1981)

    MathSciNet  MATH  Google Scholar 

  37. Arndt, H.: The influence of interpolation on the global error in retarded differential equations. Differential Difference Equations, Edited by Collatz, Meinardus and Wetterling, ISNM 62 1983, Birkhauser, Boston, pp. 9–17

  38. Arndt, H.: Numerical solution of retarded initial value problems: local and global error and stepsize control. Numer. Math. 43, 343–360 (1984)

    MathSciNet  MATH  Google Scholar 

  39. Arndt, H., Van Der Houwen, P.J., Sommeijer, B.P.: Numerical integration of retarded differential equations with periodic solutions. Int. Ser. Num. Math. 74, 41–51 (1985)

    MathSciNet  MATH  Google Scholar 

  40. Papageorgiou, G., Famelis, I.Th: On using Explicit Runge Kutta Nyström methods for the treatment of retarded differential equations with periodic solutions. Appl. Math. Comp. 102, 63–76 (1999)

    MATH  Google Scholar 

  41. In’t Hout, K.J., Spijker, M.N.: The \(\theta \)-methods in the numerical solution of delay differential equations. Report TW-89-03 (Second edition 1989), Dep. of Math. and Comp. Sc., Leiden University

  42. Weiderholt, L.F.: Stability of multistep methods for delay differential equations. Math. Comput. 30, 283–290 (1976)

    MathSciNet  Google Scholar 

  43. Yadav, N., Yadav, A., Kumar, M.: An Introduction to Neural Network Methods for Differential Equations. Springer, New York (2015)

    MATH  Google Scholar 

  44. Kumar, M., Yadav, N.: An introduction to Neural Network Methods fro Differential Equations. Comput. Math. Appl. 62, 3796–3811 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Mall, S., Chakraverty, S.: Application of legendre neural network for solving ordinary differential equations. App. Soft Comp. 43, 347–356 (2016)

    Google Scholar 

  46. Mall, S., Chakraverty, S.: Numerical Solution of nonlinear singular initial value problems of Emden-Fowler type using Chebyschev Neural Network method. NeuroComputing 149, 975–982 (2015)

    Google Scholar 

  47. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  48. Paul, C.A.H.: A test set of functional differential equations. Num. Anal. Rep. 243 (1994), Un. of Manchester/UMIST

  49. Matlab, MATLAB version 7.10.0. Natick, Massachusetts: The MathWorks Inc., 2010

  50. Cybenko, G.: Approximation to superpositions pf a sigmodial fucntion. Math. Control Signals Syst. 2, 303–314 (1989)

    MathSciNet  Google Scholar 

  51. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Liu, C., Simos, T.E. et al. Neural Network Solution of Single-Delay Differential Equations. Mediterr. J. Math. 17, 30 (2020). https://doi.org/10.1007/s00009-019-1452-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1452-5

Keywords

Mathematics Subject Classification

Navigation