Skip to main content
Log in

Existence of Solutions of Nonlinear and Non-local Fractional Boundary Value Problems

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we establish new results for non-local boundary value problems. In particular, we study a fractional differential equation where the associated integral equation has a kernel that is not bounded above and changes its sign, so that, the positive sign of the possible solutions is generally not ensured. We provide some examples which support the theory and illustrate the applicability of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, B., Agarwal, R.: On nonlocal fractional boundary value problems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 18, 535–544 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Ahmad, B., Nieto, J.J.: Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative. Fract. Calc. Appl. Anal. 15, 451–462 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)

    Article  MathSciNet  Google Scholar 

  4. Ahmad, B., Nieto, J.J.: Riemann–Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Bound. Value Probl. 36, 9 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Ahmad, B., Nieto, J.J., Alsaedi, A., El-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 13(2), 599–606 (2012)

    Article  MathSciNet  Google Scholar 

  6. Baleanu, D., Agarwal, R.P., Khan, H., Khan, R.A., Jafari, H.: On the existence of solution for fractional differential equations of order \(3 <\delta _1\leqslant 4\). Adv. Differ. Equ. 362, 9 (2015)

    MATH  Google Scholar 

  7. Baleanu, D., Nazemi, S.Z., Rezapour, S.: A \(k\)-dimensional system of fractional neutral functional differential equations with bounded delay. Abstr. Appl. Anal. (2014). https://doi.org/10.1155/2014/524761

    MATH  Google Scholar 

  8. Benchohra, M., Cabada, A., Seba, D.: An existence result for nonlinear fractional differential equations on Banach spaces. Bound. Value Probl. (2009). https://doi.org/10.1155/2009/628916

    Article  MathSciNet  MATH  Google Scholar 

  9. Butzer, P.L., Westphal, U.: An introduction to fractional calculus. In: Hilfer, R. (ed.) Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2000)

    MATH  Google Scholar 

  10. Cabada, A., Cid, J.A., Infante, G.: New criteria for the existence of non-trivial fixed points in cones. Fixed Point Theory Appl. 125, 12 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Cabada, A., Hamdi, A.: Nonlinear fractional differential equations with integral boundary value conditions. Appl. Math. Comput. 228, 251–257 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Cabada, A., Infante, G., Tojo, F.A.F.: Nonzero solutions of perturbed Hammerstein integral equations with deviated arguments and applications. Topol. Methods Nonlinear Anal. 47, 265–287 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Cabada, A., Infante, G.: Positive solutions of a nonlocal Caputo fractional BVP. Dyn. Syst. Appl. 23(4), 715–722 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Cabada, A., Saavedra, L.: Existence of solutions for \(n^{th}\)-order nonlinear differential boundary value problems by means of fixed point theorems. Nonlinear Anal. Real World Appl. 12, 180–206 (2018)

    Article  Google Scholar 

  15. Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389, 403–411 (2012)

    Article  MathSciNet  Google Scholar 

  16. Fan, H., Ma, R.: Loss of positivity in a nonlinear second order ordinary differential equations. Nonlinear Anal. 71(1), 437–444 (2009)

    Article  MathSciNet  Google Scholar 

  17. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer-Verlag, New York (1997)

    Chapter  Google Scholar 

  18. Guidotti, P., Merino, S.: Gradual loss of positivity and hidden invariant cones in a scalar heat equation. Differ. Integral Equ. 13, 1551–1568 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Infante, G.: Nonlocal boundary value problems with two nonlinear boundary conditions. Commun. Appl. Anal. 12(3), 279–288 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Infante, G.: Positive solutions of some nonlinear BVPs involving singularities and integral BCs. Discrete Contin. Dyn. Syst. 1, 99–106 (2008)

    Article  MathSciNet  Google Scholar 

  21. Infante, G., Webb, J. R. L.: Loss of positivity in a nonlinear scalar heat equation. NoDEA Nonlinear Differ. Equ. Appl. https://doi.org/10.1007/s00030-005-0039-y

    Article  MathSciNet  Google Scholar 

  22. Infante, G., Webb, J.R.L.: Nonlinear non-local boundary-value problems and perturbed Hammerstein integral equations. Proc. Edinb. Math. Soc. 49(3), 637–656 (2006)

    Article  MathSciNet  Google Scholar 

  23. Infante, G., Webb, J.R.L.: Three point boundary value problems with solutions that change sign. J. Integral Equ. Appl. 15, 37–57 (2003)

    Article  MathSciNet  Google Scholar 

  24. Infante, G., Pietramala, P.: Perturbed Hammerstein integral inclusions with solutions that change sign. Comment. Math. Univ. Carolin. 50(4), 591–605 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Karatsompanis, I., Palamides, P.K.: Polynomial approximation to a non-local boundary value problem. Comput. Math. Appl. 60, 3058–3071 (2010)

    Article  MathSciNet  Google Scholar 

  26. Kilbas, A., Srivastava, H.M., Trujillo, J.: Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  27. Lloyd, N.G.: Degree Theory, Cambridge Tracts in Mathematics 73. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  28. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, New York (1997)

    Chapter  Google Scholar 

  29. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  30. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  31. Palamides, P.K., Infante, G., Pietramala, P.: Nontrivial solutions of a nonlinear heat flow problem via Sperner lemma. Appl. Math. Lett. 22, 1444–1450 (2009)

    Article  MathSciNet  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  33. Samko, S., Kilbas, A., Maricev, O.: Fractional Integrals and Derivatives. Gordon & Breach, New York (1993)

    Google Scholar 

  34. Webb, J.R.L.: Multiple positive solutions of some nonlinear heat flow problems. Discrete Contin. Dyn. Syst. (2005). https://doi.org/10.3934/proc.2005.2005.895

    Article  MathSciNet  MATH  Google Scholar 

  35. Webb, J.R.L.: Existence of positive solutions for a thermostat model. Nonlinear Anal. Real World Appl. 13, 923–938 (2012)

    Article  MathSciNet  Google Scholar 

  36. Webb, J.R.L.: Optimal constants in a nonlocal boundary value problem. Nonlinear Anal. 63, 672–685 (2005)

    Article  MathSciNet  Google Scholar 

  37. Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006, 1–12 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

First author partially is supported by Xunta de Galicia (Spain), project EM2014/032 and AIE Spain and FEDER, Grant MTM2016-75140-P.

Second, third and fourth authors are supported by Serbian Ministry of Science and Technology (Grants 174024 and 174015).

The authors are very grateful to the reviewer of the work. His/her suggestions have been fundamental for the improvement of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sladjana Dimitrijević.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabada, A., Aleksić, S., Tomović, T.V. et al. Existence of Solutions of Nonlinear and Non-local Fractional Boundary Value Problems. Mediterr. J. Math. 16, 119 (2019). https://doi.org/10.1007/s00009-019-1388-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1388-9

Keywords

Mathematics Subject Classification

Navigation