Skip to main content
Log in

Solving Symmetric Inverse Sturm–Liouville Problem Using Chebyshev Polynomials

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this study, we consider Sturm–Liouville equation having a symmetric potential function under the separated boundary conditions on a finite interval. Then, we use Chebyshev polynomials of the first kind for calculating the approximate solution of the inverse Sturm–Liouville problem. Finally, we present the numerical results by providing some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aceto, L., Ghelardoni, P., Magherini, C.: Boundary value methods for the reconstruction of Sturm–Liouville potentials. Appl. Math. Comput. 219, 2960–2974 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Ambartsumyan, V.A.: Über eine frage der eigenwerttheorie. Zeitschrift für Physik. 53, 690–695 (1929)

    Article  Google Scholar 

  3. Andrew, A.L.: Numerov’s method for inverse Sturm–Liouville problem. Inverse Probl. 21, 223–238 (2005)

    Article  MathSciNet  Google Scholar 

  4. Andrew, A.L.: Computing Sturm–Liouville potentials from two spectra. Inverse Probl. 22, 2069–2081 (2006)

    Article  MathSciNet  Google Scholar 

  5. Böckmann, C., Kammanee, A.: Broyden method for inverse non-symmetric Sturm–Liouville problems. BIT 51, 513–528 (2011)

    Article  MathSciNet  Google Scholar 

  6. Browne, P.J., Sleeman, B.D.: A uniqueness theorem for inverse eigenparameter dependent Sturm–Liouville problems. Inverse Probl. 13, 1453–1462 (1997). https://doi.org/10.1088/0266-5611/13/6/003

    Article  MathSciNet  MATH  Google Scholar 

  7. Drignei, M.C.: A Newton-type method for solving an inverse Sturm–Liouville problem. Inverse Probl. Sci. Eng. 23(5), 851–883 (2015). https://doi.org/10.1080/17415977.2014.947478

    Article  MathSciNet  MATH  Google Scholar 

  8. Efremova, L., Freiling, G.: Numerical solution of inverse spectral problems for Sturm–Liouville operators with discontinuous potentials. Cent. Eur. J. Math. 11, 2044–2051 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Fabiano, R.H., Knobel, R., Lowe, B.D.: A finite-difference algorithm for an inverse Sturm–Liouville problem. IMA J. Numer. Anal. 15, 75–88 (1995). https://doi.org/10.1093/imanum/15.1.75

    Article  MathSciNet  MATH  Google Scholar 

  10. Freiling, G., Yurko, V.: Inverse Sturm–Liouville Problems and Their Applications. NOVA Science Publishers, New York (2001)

    MATH  Google Scholar 

  11. Gao, Q., Cheng, X., Huang, Z.: Modified Numerov’s method for inverse Sturm–Liouville problems. J. Comput. Appl. Math. 253, 181–199 (2013)

    Article  MathSciNet  Google Scholar 

  12. Gladwell, G.M.L.: The application of Schur’s algorithm to an inverse eigenvalue problem. Inverse Probl. 7, 557–565 (1991)

    Article  MathSciNet  Google Scholar 

  13. Hald, O.H.: The inverse Sturm–Liouville problem and the Rayleigh–Ritz method. Math. Comput. 32, 687–705 (1978)

    Article  MathSciNet  Google Scholar 

  14. Ignatiev, M., Yurko, V.: Numerical methods for solving inverse Sturm–Liouville problems. Result Math. 52, 63–74 (2008)

    Article  MathSciNet  Google Scholar 

  15. Kammanee, A., Böckmann, C.: Boundary value method for Sturm–Liouville problems. Appl. Math. Comput. 214, 342–352 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Kobayashi, M.: A uniqueness proof for discontinuous inverse Sturm–Liouville problems with symmetric potentials. Inverse Probl. 5, 767–781 (1989). https://doi.org/10.1088/0266-5611/5/5/007

    Article  MathSciNet  MATH  Google Scholar 

  17. Levitan, B.M., Sargsjan, I.S.: Introduction to Spectral Theory: Self Adjoint Ordinary Differential Operators. American Mathematical Society, Providence, RI (1975)

    Book  Google Scholar 

  18. Lowe, B.D., Pilant, M., Rundell, W.: The recovery of potentials from finite spectral data. SIAM J. Math. Anal. 23, 482–504 (1992). https://doi.org/10.1137/0523023

    Article  MathSciNet  MATH  Google Scholar 

  19. Marchenko, V.A., Maslov, K.V.: Stability of the problem of recovering the Sturm–Liouville operator from the spectral function. Math. USSR Sbornik. 81, 475–502 (1970)

    Article  Google Scholar 

  20. Neamaty, A., Khalili, Y.: Determination of a differential operator with discontinuity from interior spectral data. Inverse Probl. Sci. Eng. 22, 1002–1008 (2014). https://doi.org/10.1080/17415977.2013.848436

    Article  MathSciNet  MATH  Google Scholar 

  21. Pivovarchik, V.: Direct and inverse three-point Sturm–Liouville problems with parameter-dependent boundary conditions. Asymptot. Anal. 26, 219–238 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Pöschel, J., Trubowitz, E.: Inverse Spectral Theory. Volume 130 of Pure and Applied Mathematics. Academic Press, Inc, Boston, MA (1987)

    MATH  Google Scholar 

  23. Rafler, M., Böckmann, C.: Reconstruction method for inverse Sturm–Liouville problems with discontinuous potentials. Inverse Probl. 23, 933–946 (2007)

    Article  Google Scholar 

  24. Rashed, M.T.: Numerical solution of a special type of integro-differential equations. Appl. Math. Comput. 143, 73–88 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Röhrl, N.: A least-squares functional for solving inverse Sturm–Liouville problems. Inverse Probl. 21, 2009–2017 (2005). https://doi.org/10.1088/0266-5611/21/6/013

    Article  MathSciNet  MATH  Google Scholar 

  26. Röhrl, N.: Recovering boundary conditions in inverse Sturm-Liouville problems. In: Recent Advances in Differential Equations and Mathematical Physics. Vol. 412, Contemporary mathematics. Providence (RI): Amer. Math. Soc; 2006. p. 263–270. arXiv: math.NA/0601031

  27. Rundell, W., Sacks, P.E.: Reconstruction techniques for classical inverse Sturm–Liouville problems. Math. Comput. 58, 161–183 (1992)

    Article  MathSciNet  Google Scholar 

  28. Sacks, P.E.: An iterative method for the inverse Dirichlet problem. Inverse Probl. 4, 1055–1069 (1988). https://doi.org/10.1088/0266-5611/4/4/009

    Article  MathSciNet  MATH  Google Scholar 

  29. Shahriari, M., Jodayree, A., Teschl, G.: Uniqueness for inverse Sturm–Liouville problems with a finite number of transmission conditions. J. Math. Anal. Appl. 395, 19–29 (2012). https://doi.org/10.1016/j.jmaa.2012.04.048

    Article  MathSciNet  MATH  Google Scholar 

  30. Shieh, C.T., Buterin, S.A., Ignatiev, M.: On Hochstadt–Liebermann theorem for Sturm–Liouville operators. Far East J. Appl. Math. 52, 131–146 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Shieh, C.T., Yurko, V.A.: Inverse nodal and inverse spectral problems for discontinuous boundary value problems. J. Math. Anal. Appl. 347, 266–272 (2008)

    Article  MathSciNet  Google Scholar 

  32. Yang, C.F., Zettl, A.: Half inverse problems for quadratic pencils of Sturm–Liouville operators. Taiwan. J. Math. 16, 1829–1846 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yilmaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neamaty, A., Akbarpoor, S. & Yilmaz, E. Solving Symmetric Inverse Sturm–Liouville Problem Using Chebyshev Polynomials. Mediterr. J. Math. 16, 74 (2019). https://doi.org/10.1007/s00009-019-1330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1330-1

Mathematics Subject Classification

Keywords

Navigation