Skip to main content
Log in

Improved Euler–Maruyama Method for Numerical Solution of the Itô Stochastic Differential Systems by Composite Previous-Current-Step Idea

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, by composite previous-current-step idea, we propose two numerical schemes for solving the Itô stochastic differential systems. Our approaches, which are based on the Euler–Maruyama method, solve stochastic differential systems with strong sense. The mean-square convergence theory of these methods are analyzed under the Lipschitz and linear growth conditions. The accuracy and efficiency of the proposed numerical methods are examined by linear and nonlinear stochastic differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartoszewski, Z., Jackiewicz, Z.: Nordsieck representation of two-step Runge–Kutta methods for ordinary differential equations. Appl. Numer. Math. 53(2–4), 149–163 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burrage, K., Tian, T.: The composite Euler method for solving stiff stochastic differential equations. J. Comput. Appl. Math. 131(1–2), 407–426 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Casabán, M.-C., Cortés, J.-C., Romero, J.-V., Roselló, M.-D.: Solving random homogeneous linear second-order differential equations: a full probabilistic description. Mediterr. J. Math. 13(6), 3817–3836 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cortés, J.-C., Villafuerte, L., Burgos, C.: A mean square chain rule and its application in solving the random Chebyshev differential equation. Mediterr. J. Math. 14, 35 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Costabile, F., Napoli, A.: Economical Runge–Kutta method for numerical solution of stochastic differential equations. BIT 48(3), 499–509 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costabile, F., Napoli, A.: Economical Runge-Kutta methods with strong global order one for stochastic differential equations. Appl. Numer. Math. 61(2), 160–169 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, X., Ma, Q., Zhang, L.: Convergence and stability of the split-step \(\theta \)-method for stochastic differential equations. J. Comput. Math. Appl. 60(5), 1310–1321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hashemi, B., Khodabin, M., Maleknejad, K.: Numerical solution based on hat functions for solving nonlinear stochastic Itô Volterra integral equations driven by fractional Brownian motion. Mediterr. J. Math. 14, 24 (2017)

    Article  MATH  Google Scholar 

  9. Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40(3), 1041–1063 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hutzenthaler, M., Jentzen, A.: Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Am. Math. Soc. 236(2), 1112 (2015)

  11. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. In: Applications of Mathematics. Springer, Berlin (1999)

  13. Mao, X.: Convergence rates of the truncated Euler–Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 296, 362–375 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mao, X.: The truncated Euler–Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 290, 370–384 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  16. Nouri, K.: Study on stochastic differential equations via modified Adomian decomposition method. U.P.B. Sci. Bull., Ser. A 78(1), 81–90 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterr. J. Math. 12(3), 1123–1140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tian, T., Burrage, K.: Implicit Taylor methods for stiff stochastic differential equations. Appl. Numer. Math. 38(1–2), 167–185 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tocino, A., Vigo-Aguiar, J.: Weak second order conditions for stochastic Runge–Kutta methods. SIAM J. Sci. Comput. 24(2), 507–523 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Voss, D.A., Khaliq, A.Q.M.: Split-step Adams–Moulton Milstein methods for systems of stiff stochastic differential equations. Int. J. Comput. Math. 92(5), 995–1011 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, P., Li, Y.: Split-step forward methods for stochastic differential equations. J. Comput. Appl. Math. 233(10), 2641–2651 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Nouri.

Additional information

This research was in part supported by a Grant from IPM (No. 94650074), and in part by the Research Council of Semnan University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, K., Ranjbar, H. & Torkzadeh, L. Improved Euler–Maruyama Method for Numerical Solution of the Itô Stochastic Differential Systems by Composite Previous-Current-Step Idea. Mediterr. J. Math. 15, 140 (2018). https://doi.org/10.1007/s00009-018-1187-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1187-8

Keywords

Mathematics Subject Classification

Navigation