Skip to main content
Log in

Stability of Numerical Solutions for Abel–Volterra Integral Equations of the Second Kind

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We analyze the stability of convolution quadrature methods for weakly singular Volterra integral equations with respect to a linear test equation. We prove that the asymptotic behavior of the numerical solution replicates the one of the continuous problem under some restriction on the stepsize. Numerical examples illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aceto, L., Magherini, C., Novati, P.: Fractional convolution quadrature based on generalized Adams methods. Calcolo 51(3), 441–463 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Becker, L.C.: Resolvents and solutions of weakly singular linear Volterra integral equations. Nonlinear Anal. 74(5), 1892–1912 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunner, H.: Volterra Integral Equations. An Introduction to Theory and Applications. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  4. Burns, J.A., Cliff, E.M., Herdman, T.L.: A state-space model for an aeroelastic system. In: Proc. 22nd IEEE Conference on Decision and Control, pp. 1074–1077 (1983)

  5. Carlone, R., Figari, R., Negulescu, C.: The quantum beating and its numerical simulation. J. Math. Anal. Appl. 450, 1294–1316 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Choi, U.Jin, MacCamy, R.C.: Fractional order Volterra equations with applications to elasticity. J. Math. Anal. Appl. 139(2), 448–464 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  8. Diogo, T., Edwards, J.T., Ford, N.J., Thomas, S.M.: Numerical analysis of a singular integral equation. Appl. Math. Comput. 167, 372–382 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Fedotov, S., Iomin, A., Ryashko, L.: Non-markovian models for migration-proliferation dichotomy of cancer cells: anomalous switching and spreading rate. Phys. Rev. E 84(6), 061131 (2011)

    Article  Google Scholar 

  10. Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simul. 110, 96–112 (2015)

    Article  MathSciNet  Google Scholar 

  11. Garrappa, R., Galeone, L.: On multistep methods for differential equations of fractional order. Mediterr. J. Math. 3(3–4), 565–580 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Garrappa, R., Messina, E., Vecchio, A.: Effect of perturbation in the numerical solution of fractional differential equations. Discrete Contin. Dyn. Syst. Ser. B (2017). https://doi.org/10.3934/dcdsb.2017188

  13. Garrappa, R., Popolizio, M.: On accurate product integration rules for linear fractional differential equations. J. Comput. Appl. Math. 235(5), 1085–1097 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gorenflo, R., Vessella, S.: Abel Integral Equations. Analysis and Applications, Volume 1461 of Lecture Notes in Mathematics. Springer, Berlin (1991)

    MATH  Google Scholar 

  15. Győri, I., Reynolds, D.W.: On admissibility of the resolvent of discrete Volterra equations. J. Differ. Equ. Appl. 16(12), 1393–1412 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia (1985)

    Book  MATH  Google Scholar 

  17. Lubich, Ch.: Fractional linear multistep methods for Abel–Volterra integral equations of the second kind. Math. Comput. 45(172), 463–469 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lubich, Ch.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lubich, Ch.: A stability analysis of convolution quadratures for Abel–Volterra integral equations. IMA J. Numer. Anal. 6(1), 87–101 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Messina, E., Vecchio, A.: Stability and convergence of solutions to Volterra integral equations on time scales. Discrete Dyn. Nat. Soc. 2015(ID612156), 6 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Messina, E., Vecchio, A.: Stability and boundedness of numerical approximations to Volterra integral equations. Appl. Numer. Math. 116, 230–237 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Messina, E., Vecchio, A.: A sufficient condition for the stability of direct quadrature methods for Volterra integral equations. Numer. Algorithms 74(4), 1223–1236 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  24. Surguladze, T.A.: On certain applications of fractional calculus to viscoelasticity. J. Math. Sci. 112(5), 4517–4557 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Izzo.

Additional information

G. Izzo, E. Messina and A. Vecchio are members of the INdAM Research group GNCS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izzo, G., Messina, E. & Vecchio, A. Stability of Numerical Solutions for Abel–Volterra Integral Equations of the Second Kind. Mediterr. J. Math. 15, 113 (2018). https://doi.org/10.1007/s00009-018-1149-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1149-1

Mathematics Subject Classification

Keywords

Navigation