Skip to main content
Log in

A Local Galerkin Integral Equation Method for Solving Integro-differential Equations Arising in Oscillating Magnetic Fields

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The current work investigates a computational method to solve a class of integro-differential equations which describes the charged particle motion for certain configurations of oscillating magnetic fields. To handle the method, we first convert these types of integro-differential equations to two-dimensional Volterra integral equations of the second kind. Afterward, the solution of the mentioned Volterra integral equations can be estimated using the Galerkin method based on the moving least squares (MLS) approach constructed on scattered points. The MLS methodology is an effective technique for approximating an unknown function that involves a locally weighted least squares polynomial fitting. Since the scheme does not need any background meshes, it can be identified as a meshless method. The scheme is simple and effective to solve integro-differential equations and its algorithm can be easily implemented. Finally, numerical examples are included to show the validity and efficiency of the new technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assari, P., Adibi, H., Dehghan, M.: A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J. Comput. Appl. Math. 239(1), 72–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Assari, P., Adibi, H., Dehghan, M.: A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J. Comput. Appl. Math. 267, 160–181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Assari, P., Adibi, H., Dehghan, M.: A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer. Algoritm. 67(2), 423–455 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Assari, P., Adibi, H., Dehghan, M.: The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis. Appl. Numer. Math. 81, 76–93 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Assari, P., Dehghan, M.: A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions. Eur. Phys. J. Plus. 132, 1–23 (2017)

    Article  Google Scholar 

  6. Assari, P., Dehghan, M.: The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision. Eng. Comput. 33, 853–870 (2017)

    Article  Google Scholar 

  7. Assari, P., Dehghan, M.: Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Appl. Numer. Math. 123, 137–158 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  9. Bojeldain, A.A.: On the numerical solving of nonlinear Volterra integro-differential equations. Ann. Univ. Sci. Budapest. Sect. Comp. 11, 105–125 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Brunner, H., Makroglou, A., Miller, R.K.: Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution. Appl. Numer. Math. 23(4), 381–402 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehghan, M., Salehi, R.: The numerical solution of the non-linear integro-differential equations based on the meshless method. J. Comput. Appl. Math. 236(9), 2367–2377 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehghan, M., Shakeri, F.: Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method. Prog. Electromagn. Res. 78, 361–376 (2008)

    Article  Google Scholar 

  13. Drozdov, A.D., Gil, M.I.: Stability of a linear integro-differential equation with periodic coefficients. Q. Appl. Math. 54(4), 609–624 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fang, W., Wang, Y., Xu, Y.: An implementation of fast wavelet Galerkin methods for integral equations of the second kind. J. Sci. Comput. 20(2), 277–302 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fasshauer, G.E.: Meshfree methods, In: Rieth, M., Schommers, W. (eds.) Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers, Valencia (2005)

  16. Ghasemi, M.: Numerical technique for integro-differential equations arising in oscillating magnetic fields. Iran. J. Sci. Technol. A. 38(4), 473–479 (2014)

    MathSciNet  Google Scholar 

  17. Khan, Y., Ghasemi, M., Vahdati, S., Fardi, M.: Legendre multi-wavelets to solve oscillating magnetic fields integro-differential equations. UPB Sci. Bull. Ser. A 76(1), 51–58 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37(155), 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, F., Yan, T., Su, L.: Solution of an integral-differential equation arising in oscillating magnetic fields using local polynomial regression. Adv. Mech. Eng. 1–9, 2014 (2014)

    Google Scholar 

  20. Li, X., Zhu, J.: A Galerkin boundary node method and its convergence analysis. J. Comput. Appl. Math. 230(1), 314–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, X., Zhu, J.: A Galerkin boundary node method for biharmonic problems. Eng. Anal. Bound. Elem. 33(6), 858–865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, X.: Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl. Numer. Math. 61(12), 1237–1256 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Machado, J.M., Tsuchida, M.: Solutions for a class of integro-differential equations with time periodic coefficients. Appl. Math. E Notes. 2, 66–71 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Maleknejad, K., Hadizadeh, M., Attary, M.: On the approximate solution of integro-differential equations arising in oscillating magnetic fields. Appl. Math. 58(5), 595–607 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mirzaei, D., Dehghan, M.: A meshless based method for solution of integral equations. Appl. Numer. Math. 60(3), 245–262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Parand, K., Rad, J.A.: Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions. Appl. Math. Comput. 218(9), 5292–5309 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Pathak, M., Joshi, P.: High order numerical solution of a Volterra integro-differential equation arising in oscillating magnetic fields using variational iteration method. Int. J. Adv. Sci. Tech. 69, 47–56 (2014)

    Article  Google Scholar 

  28. Wazwaz, A.M., Rach, R., Duan, J.: The modified Adomian decomposition method and the noise terms phenomenon for solving nonlinear weakly-singular Volterra and Fredholm integral equations. Cent. Eur. J. Eng. 3(4), 669–678 (2013)

    Google Scholar 

  29. Wazwaz, A.M.: Linear and Nonlinear Integral equations: Methods and Applications. Higher Education Press and Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  30. Wendland, H.: Scattered Data Approximation. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  31. Zuppa, C.: Good quality point sets and error estimates for moving least square approximations. Appl. Numer. Math. 47(3–4), 575–585 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouria Assari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assari, P., Dehghan, M. A Local Galerkin Integral Equation Method for Solving Integro-differential Equations Arising in Oscillating Magnetic Fields. Mediterr. J. Math. 15, 90 (2018). https://doi.org/10.1007/s00009-018-1129-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1129-5

Mathematics Subject Classification

Keywords

Navigation