Skip to main content
Log in

On Four-Dimensional Poincaré Duality Cobordism Groups

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper continues the study of four-dimensional Poincaré duality cobordism theory from our previous work Cavicchioli et al. (Homol. Homotopy Appl. 18(2):267–281, 2016). Let P be an oriented finite Poincaré duality complex of dimension 4. Then, we calculate the Poincaré duality cobordism group \(\Omega _{4}^{{\text {PD}}}(P)\). The main result states the existence of the exact sequence \(0 \rightarrow L_4 (\pi _1 (P))/A_4 (H_2 (B\pi _1 (P), L_2)) \rightarrow {{\widetilde{\Omega }}}_{4}^{\mathrm{PD}}(P) \rightarrow \mathbb Z_8 \rightarrow 0\), where \({{\widetilde{\Omega }}}_{4}^{\mathrm{PD}}(P)\) is the kernel of the canonical map \({\Omega }_{4}^{\mathrm{PD}}(P) \rightarrow H_4 (P, \mathbb Z) \cong \mathbb Z\) and \(A_4 : H_4 (B\pi _1, \mathbb L) \rightarrow L_4 (\pi _1 (P))\) is the assembly map. It turns out that \({\Omega }_{4}^{\mathrm{PD}}(P)\) depends only on \(\pi _1 (P)\) and the assembly map \(A_4\). This does not hold in higher dimensions. Then, we discuss several examples. The cases in which the canonical map \(\Omega _{4}^{{\text {TOP}}}(P) \rightarrow \Omega _{4}^{{\text {PD}}}(P)\) is not surjective are of particular interest. Its image coincides with the kernel of the total surgery obstruction map. In fact, we establish an exact sequence

where s is Ranicki’s total surgery obtruction map. In the above cases, there are \({\text {PD}}_4\)-complexes X which cannot be homotopy equivalent to manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bak, A.: The computation of surgery groups of odd torsion groups. Bull. Am. Math. Soc. 80(6), 1113–1116 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Browder, W.: Poincaré spaces, their normal fibrations and surgery. Invent. Math. 17, 191–202 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Browder, W., Brumfiel, G.: A note on cobordism of Poincaré duality spaces. Bull. Am. Math. Soc. 77, 400–403 (1971)

    Article  MATH  Google Scholar 

  4. Browder, W., Liulevicius, A., Peterson, F.P.: Cobordism theories. Ann. Math. 84, 91–101 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cappell, S.: Mayer–Vietoris sequences in Hermitian K-theory. Springer Lect. Notes 343, 478–512 (1973)

    MathSciNet  MATH  Google Scholar 

  6. Cappell, S., Shaneson, J.: On 4-dimensional surgery and applications. Comment. Math. Helv. 46, 500–528 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavicchioli, A., Hegenbarth, F.: On 4-manifolds with free fundamental groups. Forum Math. 6, 415–429 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cavicchioli, A., Hegenbarth, F., Repovš, D.: Four-manifolds with surface fundamental groups. Trans. Am. Math. Soc. 349, 4007–4019 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cavicchioli, A., Hegenbarth, F., Repovš, D.: On minimal Poincaré 4-complexes. Turk. J. Math. 38, 535–557 (2014)

    Article  MATH  Google Scholar 

  10. Cavicchioli, A., Hegenbarth, F., Spaggiari, F.: \(\operatorname{PD}_4\)- complexes: constructions, cobordisms and signatures. Homol. Homotopy Appl. 18(2), 267–281 (2016)

    Article  MATH  Google Scholar 

  11. Hausmann, J.C., Vogel, P.: Geometry on Poincaré Spaces, Math. Lect. Notes, vol. 41. Princeton Univ. Press, Princeton (1993)

  12. Hegenbarth, F., Repovš, D., Spaggiari, F.: Connected sums of 4-manifolds. Topol. Appl. 146–147, 209–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hillman, J.A.: \(\operatorname{PD}_4\)-complexes with strongly minimal models. Topol. Appl. 153, 2413–2424 (2006)

    Article  MATH  Google Scholar 

  14. Hillman, J.A.: \(\operatorname{PD}_4\)-complexes and 2-dimensional duality groups (2013). arXiv:1303.5486v3

  15. Kharshiladze, A.F.: Surgery on manifolds with finite fundamental groups. Uspechi Mat. Nauk. 42, 55–85 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Kirby, R., Siebenmann, L.: Foundational Essays on Topological Manifolds, Smoothings and Triangulations, Ann. Math. Studies, vol. 88. Princeton Univ. Press, Princeton (1977)

  17. Klein, J.: Poincaré duality spaces. In: Cappell, S., Ranicki, A., Rosenberg, I. (eds.) Surveys on Surgery Theory. Ann. Math. Studies, vol. 1, pp. 135–164. Princeton Univ. Press, Princeton (2000)

  18. Jahren, B., Kwasik, S.: 3-Dimensional surgery theory, UNil-groups and the Borel conjecture. Topology 42, 1353–1369 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jones, L.E.: Patch spaces: a geometric representation for Poincaré spaces. Ann. Math. 97, 276–306 (1973)

    Article  Google Scholar 

  20. Levitt, N.: Poincaré duality cobordism. Ann. Math. 96, 211–244 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Levitt, N., Ranicki, A.A.: Intrinsic transversality structures. Pac. J. Math. 129, 85–144 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mukerjce, H.K.: Poincaré cobordism, exact sequences and characterization. Pac. J. Math 146, 85–101 (1990)

    Article  Google Scholar 

  23. Quinn, F.: Surgery on Poincaré and normal spaces. Bull. Am. Math. Soc. 78, 262–267 (1972)

    Article  MATH  Google Scholar 

  24. Quinn, F.: The stable topology of 4-manifolds. Topol. Appl. 15, 71–77 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ranicki, A.A.: The total surgery obstruction. Springer Lect. Notes 763, 275–316 (1978)

    MathSciNet  Google Scholar 

  26. Ranicki, A.A.: Algebraic L-Theory and Topological Manifolds, Tracts in Mathematics, vol. 102. Cambridge Univ. Press, Cambridge (1992)

  27. Ranicki, A.A.: The structure set of an arbitrary space, the algebraic surgery exact sequence, and the total surgery obstruction. In: Topology of High Dimensional Manifolds, ICTP Lecture Notes, vol. 9, pp. 515–538 (2002)

  28. Spivak, L.: Spaces satisfying Poincaré duality. Topology 6, 77–102 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wall, C.T.C.: Poincaré complexes I. Ann. Math. 86, 213–245 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wall, C.T.C.: Classification of Hermitian forms VI. Ann. Math. 103, 1–80 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wall, C.T.C.: Surgery on Compact Manifolds, Second Edition (A.A. Ranicki ed.) Math. Surveys and Monographs, vol. 69. Amer. Math. Soc., Providence (1999)

  32. Whitehead, G.W.: Generalized homology theories. Trans. Am. Math. Soc. 102, 227–283 (1962)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Work performed under the auspices of the scientific group G.N.S.A.G.A. of the C.N.R (National Research Council) of Italy and partially supported by the MIUR (Ministero per la Ricerca Scientifica e Tecnologica) of Italy within the project Strutture Geometriche, Combinatoria e loro Applicazioni. The authors would like to thank the anonymous referee for his/her useful suggestions, which improved the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cavicchioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavicchioli, A., Hegenbarth, F. & Spaggiari, F. On Four-Dimensional Poincaré Duality Cobordism Groups. Mediterr. J. Math. 15, 61 (2018). https://doi.org/10.1007/s00009-018-1102-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1102-3

Mathematics Subject Classification

Keywords

Navigation