Skip to main content
Log in

A Family of Iterative Methods with Accelerated Convergence for Restricted Linear System of Equations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop a family of iterative methods with accelerated convergence for solving restricted linear system of equations \(Ax = b\), \(x\in T\), where \(A \in \mathbb {C}^{m\times n}\), \(b \in \mathbb {C}^{m}\) and T is a subspace of \(\mathbb {C}^{n}\). Necessary and sufficient convergence conditions along with the estimation of error bounds of derived approximations are established. The proposed family of iterative methods is applied to solve restricted linear system of equations for different subspaces T. In particular, least-squares solution of an overdetermined linear system and Krylov solution of a square singular linear system of equations are inspected. In addition, the iterative family is tested on a number of numerical examples, including randomly generated dense matrices, sparse singular matrices, and standard test matrices from the Matrix Computational Toolbox. The obtained results are compared with the existing iterative methods and with direct methods, such as the singular value decomposition technique and the QR factorization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  2. Chen, Y.L.: A Cramer rule for solution of the general restricted linear equations. Linear Multilinear Algebra 34, 177–186 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Y.L.: Iterative methods for solving restricted linear equations. Appl. Math. Comput. 86, 171–184 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Campbell, S.L., Meyer Jr., C.D.: Generalized Inverse of Linear Transformations. Pitman, London (1979)

    MATH  Google Scholar 

  5. Miyajima, S.: Component wise enclosure for solutions of least squares problems and underdetermined systems. Linear Algebra Appl. 444, 28–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hanke, M., Hochbruck, M.: A Chebyshev-like semiiteration for inconsistent linear systems. Electron. Trans. Numer. Anal. 1, 89–103 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Srivastava, S., Gupta, D.K.: A new representation for \(A^{(2,3)}_{T, S}\). Appl. Math. Comput. 243, 514–521 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Petković, M.D.: Generalized Schultz iterative methods for the computation of outer inverses. Comput. Math. Appl. 67, 1837–1847 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  10. Ben-Israel, A.: A Cramer rule for least-norm solution of consistent linear equations. Linear Algebra Appl. 43, 223–226 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, J., Chen, G.: On determinantal representation for the generalized inverse \(A^{(2)}_{T, S}\) and its applications. Numer. Linear Algebra Appl. 14, 169–182 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sheng, X., Chen, G.: Several representations of generalized inverse and their application. Int. J. Comput. Math. 85, 1441–1453 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wei, Y., Liu, X., Wu, H.: Subproper and regular splittings for restricted rectangular linear system. Appl. Math. Comput. 136, 115–124 (2003)

    MathSciNet  Google Scholar 

  14. Chen, Y.L., Tan, X.Y.: Semiconvergence criteria of iterations and extrapolated iterations and constructive methods of semiconvergent iteration matrices. Appl. Math. Comput. 167, 930–956 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Wei, Y., Wu, H.: On the perturbation and subproper splittings for the generalized inverse \(A^{(2)}_{T, S}\) of rectangular matrix A. J. Comput. Appl. Math. 137, 317–329 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Srivastava, S., Gupta, D.K.: An iterative method for solving general restricted linear equations. Appl. Math. Comput. 262, 344–353 (2015)

    MathSciNet  Google Scholar 

  17. Sidi, A., Kanevsky, Y.: Orthogonal polynomials and semi-iterative methods for the Drazin-inverse solution of singular linear systems. Numer. Math. 93, 563–581 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miljković, S., Miladinović, M., Stanimirović, P.S., Wei, Y.: Gradient methods for computing the Drazin-inverse solution. J. Comput. Appl. Math. 253, 255–263 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pan, V.Y., Schreiber, R.: An improved Newton iteration for the generalized inverse of a matrix. SIAM J. Sci. Stat. Comput. 12, 1109–1131 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  21. Chen, Y., Chen, X.: Representation and approximation of the outer inverse \(A^{(2)}_{T, S}\) of a matrix \(A\). Linear Algebra Appl. 308, 85–107 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moriya, K., Noderab, T.: A new scheme of computing the approximate inverse precondonditioners for the reduced linear systems. J. Comput. Appl. Math. 129, 345–352 (2007)

    Article  Google Scholar 

  23. Li, H.-B., Huang, T.-Z., Zhang, Y., Liu, X.-P., Gu, T.-X.: Chebyshev-type methods and preconditioning techniques. Appl. Math. Comput. 129, 345–352 (2007)

    Google Scholar 

  24. Stewart, G.W.: On the perturbation of pseudo-inverses, projections and linear least squares problems. SIAM Rev. 19, 634–662 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Datta, B.N.: Numerical Linear Algebra and Applications. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  26. Esmaeili, H., Pirnia, A.: An efficient quadratically convergent iterative method to find the Moore–Penrose inverse. Int. J. Comput. Math. 94, 1079–1088 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ipsen, I.C.F., Meyer, C.D.: The idea behind Krylov methods. Am. Math. Mon. 105, 889–899 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stanimirović, P.S., Pappas, D., Katsikis, V.N., Stanimirović, I.P.: Full-rank representations of outer inverses based on the \(QR\) decomposition. Appl. Math. Comput. 218, 10321–10333 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, S., Oyanagi, Y., Sugihara, M.: Necessary and sufficient conditions for the convergence of Orthomin(\(k\)) on singular and inconsisent linear systems. Numer. Math. 87, 391–405 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shwetabh Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Stanimirović, P.S., Katsikis, V.N. et al. A Family of Iterative Methods with Accelerated Convergence for Restricted Linear System of Equations. Mediterr. J. Math. 14, 222 (2017). https://doi.org/10.1007/s00009-017-1020-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-1020-9

Keywords

Mathematics Subject Classification

Navigation