Skip to main content
Log in

Ground States for a Class of Generalized Quasilinear Schrödinger Equations in \({\mathbb {R}}^N\)

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the following generalized quasilinear Schrödinger equation:

$$\begin{aligned} -\text {div}(g^2(u)\nabla u)+g(u)g'(u)|\nabla u|^2+V(x)u=f(x,u),\,\, x\in {\mathbb {R}}^N, \end{aligned}$$

where \(N\ge 3\), \(2^*=\frac{2N}{N-2}\), \(g\in \mathcal {C}^1({\mathbb {R}},{\mathbb {R}}^{+})\), V(x) is 1-periodic or a bounded potential well. Using a change of variable, we obtain the existence of ground states for this problem using the Mountain Pass Theorem. Our results generalize some existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurihara, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Japan 50, 3262–3267 (1981)

    Article  Google Scholar 

  2. Laedke, E., Spatschek, K., Stenflo, L.: Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 24, 2764–2769 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, X.L., Sudan, R.N.: Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys. Rev. Lett. 70, 2082–2085 (1993)

    Article  Google Scholar 

  4. Bouard, A.D., Hayashi, N., Saut, J.: Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Commun. Math. Phys. 189, 73–105 (1997)

    Article  MATH  Google Scholar 

  5. Ritchie, B.: Relativistic self-focusing and channel formation in laser-plasma interaction. Phys. Rev. E 50, 687–689 (1994)

    Article  Google Scholar 

  6. Bass, F.G., Nasanov, N.N.: Nonlinear electromagnetic-spin waves. Phys. Rep. 189, 165–223 (1990)

    Article  Google Scholar 

  7. Makhankov, V.G., Fedyanin, V.K.: Nonlinear effects in quasi-one-dimensional models and condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    Article  MathSciNet  Google Scholar 

  8. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys. B 37, 83–87 (1980)

    Article  MathSciNet  Google Scholar 

  9. Lange, H., Poppenberg, M., Teismann, H.: Nash–Moser methods for the solution of quasilinear Schrödinger equations. Commun. Partial Differ. Equ. 24, 1399–1418 (1999)

    Article  MATH  Google Scholar 

  10. Poppenberg, M., Schmitt, K., Wang, Z.Q.: On the existence of soliton solutons to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  MATH  Google Scholar 

  11. Liu, J., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations. I. Proc. Am. Math. Soc. 131, 441–448 (2003)

    Article  MATH  Google Scholar 

  12. Liu, J., Wang, Y., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations. II. J. Differ. Equ. 187, 47–493 (2003)

    Article  MATH  Google Scholar 

  13. Liu, J., Wang, Y., Wang, Z.Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

    Article  MATH  Google Scholar 

  14. Alves, C.O., Souto, M.A.S.: Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity. J. Differ. Equ. 254, 1977–1991 (2013)

    Article  MATH  Google Scholar 

  15. Deng, Y., Peng, S., Yan, S.: Positive solition solutions for generalized quasilinear Schrödinger equations with critical growth. J. Differ. Equ. 258, 115–147 (2015)

    Article  MATH  Google Scholar 

  16. Shen, Y., Wang, Y.: Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal. Theory Methods Appl. 80, 194–201 (2013)

    Article  MATH  Google Scholar 

  17. Cuccagna, S.: On instability of excited states of the nonlinear Schrödinger equation. Phys. D 238, 38–54 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheng, Y., Yang, J.: Positive solution to a class of relativistic nonlinear Schrödinger equation. J. Math. Anal. Appl. 411, 665–674 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, Y., Yang, J.: Soliton solutions to a class of relativistic nonlinear Schrödinger equations. Appl. Math. Comput. 260, 342–350 (2015)

    MathSciNet  Google Scholar 

  20. Shi, H., Chen, H.: Positive solutions for generalized quasilinear Schrödinger equations with potential vanishing at infinity. Appl. Math. Lett. 61, 137–142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, J.H., Tang, X.H., Cheng, B.: Non-Nehari manifold method for a class of generalized quasilinear Schrödinger equations. Appl. Math. Lett. 74, 20–26 (2017)

    Article  MathSciNet  Google Scholar 

  22. Shen, Y., Wang, Y.: Standing waves for a class of quasilinear Schrödinger equations. Complex Var. Elliptic Equ. 61, 817–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shen, Y., Wang, Y.: Two types of quasilinear elliptic equations with degenerate coerciveness and slightly superlinear growth. Appl. Math. Lett. 47, 21–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, F., Zhu, X., Liang, Z.: Multiple solutions to a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation. J. Math. Anal. Appl. 443, 11–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Deng, Y., Peng, S., Yan, S.: Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J. Differ. Equ. 260, 1228–1262 (2016)

    Article  MATH  Google Scholar 

  26. Deng, Y., Peng, S., Wang, J.: Nodal soliton solutions for generalized quasilinear Schrödinger equations. J. Math. Phys. 55, 051501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Deng, Y., Peng, S., Wang, J.: Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent. J. Math. Phys. 54, 011504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Q., Teng, K., Wu, X.: Ground state solutions and geometrically distinct solutions for generalized quasilinear Schrödinger equation. Math. Methods Appl. Sci. 40, 2165–2176 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Li, Q., Wu, X.: Multiple solutions for generalized quasilinear Schrödinger equations. Math. Methods Appl. Sci. 40, 1359–1366 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, X., Li, F., Liang, Z.: Existence of ground state solutions to a generalized quasilinear Schrödinger–Maxwell system. J. Math. Phys. 57, 101505 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, J.H., Tang, X.H., Cheng, B.: Existence of ground state sign-changing solutions for a class of generalized quasilinear Schrödinger-Maxwell system in \({\mathbb{R}}^3\). Comput. Math. Appl. 74, 466–481 (2017)

    Article  MathSciNet  Google Scholar 

  32. Liu, S.: On ground states of superlinear \(p\)-Laplacian equations in \({\mathbb{R}}^N\). J. Math. Anal. Appl. 361, 48–58 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ambrosio, V.: Ground states for superlinear fractional Schrödinger equations in \({\mathbb{R}}^N\). Annal. Aca. Sci. Fenn. Math. 741, 745–756 (2016)

    Article  MATH  Google Scholar 

  34. Jeanjean, L., Tanaka, K.: A positive solution for an asymptotically linear elliptic problem on \({\mathbb{R}}^N\) autonomous at infinity. ESAIM Control Optim. Calc. Var. 7, 597–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  36. Lions, P.L.: The concentration-compactness principle in the calculus of variations: the locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 2, 109–145 (1984)

  37. Lions, P.L.: The concentration-compactness principle in the calculus of variations: the locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 4, 223–283 (1984)

  38. Willem, M.: Minimax Theorems, Proress in Nonlinear Differential Equations and Their Applications 24. Birkhäuser, Boston (1996)

    Google Scholar 

  39. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem set on \({\mathbb{R}}^N\). Proc. R. Soc. Edinburgh 129, 787–809 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zou, W.M.: Variant fountain theorems and their applications. Manuscripta Math. 104, 343–358 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Aech. Rat. Mech. Anal. 82, 313–345 (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhua Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Tang, X. & Cheng, B. Ground States for a Class of Generalized Quasilinear Schrödinger Equations in \({\mathbb {R}}^N\) . Mediterr. J. Math. 14, 190 (2017). https://doi.org/10.1007/s00009-017-0990-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0990-y

Mathematics Subject Classification

Keywords

Navigation