Skip to main content
Log in

Time–Frequency Concentration, Heisenberg Type Uncertainty Principles and Localization Operators for the Continuous Dunkl Wavelet Transform on \(\mathbb {R}^{d}\)

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the continuous Dunkl wavelet transform \(\Phi ^{D}_{h} \) associated with the Dunkl operators on \(\mathbb {R}^{d}\). We analyze the concentration of this transform on sets of finite measure. In particular, Donoho–Stark and Benedicks type uncertainty principles are given. Next, we prove many versions of Heisenberg type uncertainty principles for \(\Phi ^{D}_{h} \). Quantitative Shapiro’s dispersion uncertainty principle and umbrella theorem are proved for the Dunkl continuous wavelet transform. Finally, we investigate the localization operators for \(\Phi ^{D}_{h} \), in particular we prove that they are in the Schatten-von Neumann class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balazs, P.: Hilbert-Schmidt operators and frames-classification, best approximation by multipliers and algorithms. Int. J. Wavelets, Multiresolution Inf. Process. 6(2), 315–330 (2008)

  2. Balazs, P., Bayer, D., Rahimi, A.: Multipliers for continuous frames in Hilbert spaces. J. Phys. A Math. Theor. 45(24), 244023 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chui, C.K.: An Introduction to Wavelets. Academic Press, Waltham (1992)

    MATH  Google Scholar 

  4. Cordero, E., Gröchenig, K.: Time-frequency analysis of localization operators. J. Funct. Anal. 205(1), 107–131 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daubechies, I.: Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Inf. Theory 34(4), 605–612 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daubechies, I., Paul, T.: Time-frequency localization operators-a geometric phase space approach: II. The use of dilations. Inverse Probl. 4(3), 661–680 (1988)

    Article  MATH  Google Scholar 

  7. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. SIAM, Philadelphia (1992)

  9. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Mari, F., Feichtinger, H., Nowak, K.: Uniform eigenvalue estimates for time-frequency localization operators. J. Lond. Math. Soc. 65(03), 720–732 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Mari, F., Nowak, K.: Localization type Berezin-Toeplitz operators on bounded symmetric domains. J. Geom. Anal. 12(1), 9–27 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311, 167–183 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dunkl, C.F.: Hankel transforms associated to finite reflection groups. Contemp. Math. 138, 123–138 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Jeu, M.F.E.: The Dunkl transform. Invent. Math. 113, 147–162 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghobber, S., Jaming, P.: Uncertainty principles for integral orperators. Studia Math. 220, 197–220 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghobber, S.: Dunkl-Gabor transform and time-frequency concentration. Czechoslov. Math. J. 65(1), 255–270 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghobber, S.: Shapiro’s uncertainty principle in the Dunkl setting. Bull. Aust. Math. Soc. 92(1), 98–110 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Goupilland, P., Grossmann, A., Morlet, J.: Cycle octave and related transforms in seismic signal analysis. Geoexploration 23, 85–102 (1984–1985)

  19. Gröchenig, K.: Foundations of time-frequency analysis. Springer Science & Business Media, Berlin (2001)

    Book  MATH  Google Scholar 

  20. Grossmann, A., Morlet, J.: Decomposition of Hardy Functions Intosquare Integrable Wavelets of Constant Shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Havin, V., Jricke, B.: The Uncertainty Principle in Harmonic Analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. vol. 28. Springer, Berlin (1994)

  22. Holschneider, M.: Wavelets: An Analysis Tool. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  23. Koornwinder, T.H.: The continuous wavelet transform, in Wavelets: An Elementary Treatment of Theory and Applications, pp. 27–48. World Scientific, Singapore (1993)

  24. Malinnikova, E.: Orthonormal sequences in \(L^2(\mathbb{R}^{d})\) and time frequency localization. J. Fourier Anal. Appl. 16(6), 983–1006 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mejjaoli, H., Sraieb, N.: Uncertainty principles for the continuous Dunkl Gabor transform and the Dunkl continuous wavelet transform. Mediterr. J. Math. 5, 443–466 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Meyer, Y.: Wavelets and Operators. Press Syndicate of University of Cambridge, Cambridge (1995)

    MATH  Google Scholar 

  27. Ramanathan, J., Topiwala, P.: Time-frequency localization via the Weyl correspondence. SIAM J. Math. Anal. 24(5), 1378–1393 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rösler, M.: Positivity of Dunkl’s intertwining operator. Duke Math. J. 98, 445–463 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Soltani, F.: A general form of Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform. Integr. Transf. Spec. Funct. 24, 401–409 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  31. Thangavelu, S., Xu, Y.: Convolution operator and maximal functions for Dunkl transform. J. d’Anal. Math. 97, 25–56 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Trimèche, K.: Generalized Wavelets and Hypergroups. Gordon and Breach Science Publishers, London (1997)

    MATH  Google Scholar 

  33. Trimèche, K.: Paley-Wiener theorems for Dunkl transform and Dunkl translation operators. Integr. Transf. Special Funct. 13, 17–38 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Trimèche, K.: Inversion of the Dunkl intertwining operator and its dual using Dunkl wavelets. Rocky Mt. J. Math. 32(2), 889–918 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform. Doc. Math. J. DMV (electronic) 5, 201–226 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Wong, M.W.: Wavelet transforms and localization operators, vol. 136. Springer Science & Business Media, Berlin (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Mejjaoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejjaoli, H., Trimèche, K. Time–Frequency Concentration, Heisenberg Type Uncertainty Principles and Localization Operators for the Continuous Dunkl Wavelet Transform on \(\mathbb {R}^{d}\) . Mediterr. J. Math. 14, 146 (2017). https://doi.org/10.1007/s00009-017-0925-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0925-7

Mathematics Subject Classification

Keywords

Navigation