Skip to main content
Log in

Optimization of Projectile Motion Under Air Resistance Quadratic in Speed

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

This article centers around the problem of maximizing the horizontal range of a projectile that is launched from atop a tower and is subject only to gravity and air resistance quadratic in speed. Here the surface to which the projectile is launched is represented by a convex impact function, while the projectile motion is described by a classical approximation model for flight curves that is widely considered acceptable for quadratic drag and launch angles up to moderate size. In this setting, the optimal range is given by the point where the impact function intersects the enveloping function induced by the family of flight paths. In the special case of a linear impact function, manageable explicit formulas for the range function, the maximal range, and the corresponding optimal launch angle are provided in terms of the Lambert W function. The article concludes with a solution to Tartaglia’s inverse problem in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belgacem, C.H.: Range and flight time of quadratic resisted projectile motion using the Lambert \(W\) function. Eur. J. Phys. 35, 055025–055032 (2014)

    Article  MATH  Google Scholar 

  2. Bruckner, A.M., Bruckner, J.B., Thomson, B.S.: Real Analysis. Prentice-Hall, Upper Saddle River (1997)

    MATH  Google Scholar 

  3. de Mestre, N.: The Mathematics of Projectiles in Sport. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  4. Groetsch, C.W.: Tartaglia’s inverse problem in a resistive medium. Am. Math. Mon. 103, 546–551 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Groetsch, C.W.: Inverse Problems. Mathematical Association of America, Washington, D.C. (1999)

  6. Groetsch, C.W.: Geometrical aspects of an optimal trajectory. Pi Mu Epsilon J. 11, 487–490 (2003)

    Google Scholar 

  7. Hackborn, W.W.: Motion through air: what a drag. Can. Appl. Math. Q. 14, 285–298 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Hackborn, W.W.: Projectile motion: resistance is fertile. Am. Math. Mon. 115, 813–819 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Halley, E.: A proposition of general use in the art of gunnery, shewing the rule of laying a mortar to pass, in order to strike any object above or below the horizon. Philos. Trans. R. Soc. 19, 68–72 (1695)

    Article  Google Scholar 

  10. Kantrowitz, R., Neumann, M.M.: Optimal angles for launching projectiles: Lagrange vs CAS. Can. Appl. Math. Q. 16, 279–299 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Kantrowitz, R., Neumann, M.M.: Let’s do launch: more musings on projectile motion. Pi Mu Epsilon J. 13, 219–228 (2011)

    MathSciNet  Google Scholar 

  12. Kantrowitz, R., Neumann, M.M.: Some real analysis behind optimization of projectile motion. Mediterr. J. Math. 11, 1081–1097 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kantrowitz, R., Neumann, M.M.: Optimization of projectile motion under linear air resistance. Rend. Circ. Mat. Palermo 64, 365–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lamb, H.: Dynamics. Cambridge University Press, Cambridge (1961)

    MATH  Google Scholar 

  15. Packel, E.W., Yuen, D.S.: Projectile motion with resistance and the Lambert \(W\) function. Coll. Math. J. 35, 337–350 (2004)

    Article  MathSciNet  Google Scholar 

  16. Parker, G.W.: Projectile motion with air resistance quadratic in the speed. Am. J. Phys. 45, 606–610 (1977)

    Article  Google Scholar 

  17. Stromberg, K.R.: Introduction to Classical Real Analysis. Wadsworth, Belmont (1981)

    MATH  Google Scholar 

  18. Warburton, R.D.H., Wang, J.: Analysis of asymptotic projectile motion with air resistance using the Lambert \(W\) function. Am. J. Phys. 72, 1404–1407 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kantrowitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantrowitz, R., Neumann, M.M. Optimization of Projectile Motion Under Air Resistance Quadratic in Speed. Mediterr. J. Math. 14, 9 (2017). https://doi.org/10.1007/s00009-016-0815-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-016-0815-4

Mathematics Subject Classification

Keywords

Navigation