Skip to main content
Log in

Positive Radial Solutions for a Class of Singular p-Laplacian Systems in a Ball

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove the existence and nonexistence of positive radial solutions for the system

$$\left\{\begin{array}{ll} -\Delta_{p}u_{1}=h_{1}(u_{2})+\mu _{1}f_{1}(u_{2}) & \quad \text{in} \, B, \\ -\Delta_{p}u_{2}=h_{2}(u_{1})+\mu _{2}f_{2}(u_{1}) & \quad \text{in}\, B, \\ u_{1}=u_{2}=0 & \quad \text{on} \, \partial B, \end{array}\right.$$

where \({p > 1, \Delta _{p}u = {\rm div}(|\nabla u|^{p-2}\nabla u), \, B}\) is the open unit ball in\({\mathbb{R}^{N},h_{i}, f_{i}:(0,\infty) \rightarrow \mathbb{R}}\) with f i asymptotically p-linear at , and μ i are positive constants, i = 1, 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Arcoya D., Buffoni B.: Positive solutions for some semi-positone problems via bifurcation theory. Differ. Integr. Equ. 7, 655–663 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosetti A, Hess P: Positive solutions of asymptotically linear elliptic eigenvalue problems. J. Math. Anal. Appl. 73, 411–422 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brock, F.: Radial symmetry of nonnegative solutions of semilinear elliptic equations involving the p-Laplacian. In: Progress in Partial Differential Equations, vol. 1, Pitman Research Notes in Mathematics Series, vol. 383, pp. 46–57. Longman Scientific & Technical, Harlow (1998)

  4. Cossio J., Herron J.: Existence of radial solutions for an asymptotically linear p-Laplacian problem. J. Math. Anal. Appl. 345, 583–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dragos-Patru, C.: Non-existence criteria for solutions of the Lane–Emden–Fowler system 25, 610–613 (2012)

  6. Hai DD.: Singular elliptic systems with asymptotically linear nonlinearities. Differ. Integr. Equ. 26, 837–844 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Hai DD., Willams JL.: Positive radial solutions for a class of quasilinear boundary value problems in a ball. Nonlinear Anal. 75, 1744–1750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Peng C.: Asymptotically linear elliptic systems with parameters. Glasgow Math. J. 52, 383–389 (2010)

    Article  MATH  Google Scholar 

  9. Peng C., Yang J.: Positive solutions for asymptotically linear elliptic systems. Glasgow Math. J. 49, 377–390 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Prashanth S.: Strong comparison principle for radial solutions of quasilinear equations. J. Math. Anal. Appl. 258, 366–370 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sakaguchi S.: Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems. Ann. Scuola Norm. Sup. Pisa Cl. Sci 14(4), 403–421 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Hai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, D.D., Williams, J.L. Positive Radial Solutions for a Class of Singular p-Laplacian Systems in a Ball. Mediterr. J. Math. 12, 791–801 (2015). https://doi.org/10.1007/s00009-014-0436-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-014-0436-8

Mathematical Subject Classification

Keywords

Navigation