Skip to main content
Log in

M, The Power Definition in Geometric Algebra that Unveils the Shortcomings of the Nonsinusoidal Apparent Power S

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The circuit analysis approach based on geometric algebra and \(\varvec{M}\), the power definition based on the geometric product between the voltage and the current multivectors, are used here to demonstrate the shortcomings of the traditional definition of the non-sinusoidal apparent power S. The shortcomings of S are illustrated in three ways. Firstly, by showing an example of how the norm of \(\varvec{M}\) contains S. Secondly, through six experiments that involve compliance with: Kirchhoff’s circuit laws, Tellegen’s theorem, the principle of conservation of energy, the equivalency of two terminal networks and the concept of reactive power compensation. Lastly, by showing how the use of S leads the current’s physical component power theory astray. The experiments show contradictions between the aforementioned circuit theory fundamentals and the results attained with S but a compelling harmony with the results attained with \(\varvec{M}\). The evidence reveals two unprecedented discoveries: (1) that mathematical models aimed at explaining energy flow in non-sinusoidal circuits shouldn’t be based on the decomposition of S—as traditionally done— and, (2) the inappropriateness of extrapolating definitions from sinusoidal conditions to non-sinusoidal settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. Akagi, H., Kanazawa, Y., Nabae, A.: Generalized theory of the instantaneous reactive power in three-phase circuits. Proc. Int. Power Electron. Conf. 83, 1375–1386 (1983)

    Google Scholar 

  2. Arnol’d, V.I.: On teaching mathematics. Uspekhi Mat. Nauk 53, 229–234 (1989)

    Google Scholar 

  3. Arrllaga, J., Medina, A., et al.: The Harmonic Domain—a fram of reference for power system harmonic analysis. IEEE Trans. Power Syst. 10(1), 433–440 (1995)

    Article  ADS  Google Scholar 

  4. Bay, S.J.: Fundamentals of Linear State Space Systems. McGraw Hill, New York (1999)

    Google Scholar 

  5. Belnap, N.: Tonk, plonk, and plink. Analysis 22, 130–134 (1962)

    Article  Google Scholar 

  6. Budeanu, C.I.: Puissances Réctives et Fictives. Institut National Roumain, Bucharest (1927)

    Google Scholar 

  7. Castilla, M.J., Bravo, C., Ordóñez, M., Montaño, J.C: Clifford theory: a geometrical interpretation of multivectorial apparent power. IEEE Trans. Circuit Syst. 55, 3358–3367 (2008)

  8. Castro-Núñez, M., Londoño-Monsalv, D., Castro-Puche, R.: Geometric algebra, the key tool to unveil why non-sinusoidal power theories fail. In: 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp. 1–6 (2021). https://doi.org/10.1109/ICECCME52200.2021.9590900

  9. Castro-Núñez, M., Castro-Puche, R., Nowicki, E.: The use of geometric algebra in circuit analysis and its impact on the definition of power. Nonsinusoidal Currents Compensation, pp. 89-95 (2010)

  10. Castro-Núñez, M.: The use of geometric algebra in the analysis of non-sinusoidal networks and the construction of a unified power theory for single phase systems -a paradigm shift. Dissertation, University of Calgary (2013)

  11. Castro-Núñez, M., Castro-Puche, R.: The IEEE Standard 1459, the CPC power theory, and geometric algebra in circuits with nonsinusoidal sources and linear loads. IEEE Trans. Circuits Syst. 59, 2980–2990 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Castro-Núñez, M., Castro-Puche, R.: Advantages of geometric algebra over complex numbers in the analysis of networks with nonsinusoidal sources and linear loads. IEEE Trans. Circuits Syst. 59, 2056–2064 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Castro-Núñez, M., Londoño-Monsalve, D., Castro-Puche, R.M.: The conservative power quantity based on the flow of energy. J. Eng. 2016, 269–276 (2016). https://doi.org/10.1049/joe.2016.0157

    Article  MATH  Google Scholar 

  14. Castro-Núñez, M., Castro-Puche, R., Londoño-Monsalv, D.: Theorems of compensation and Tellegen in non-sinusoidal circuits via geometric algebra. J. Eng. 2019, 3409–3417 (2019). https://doi.org/10.1049/joe.2019.0048

    Article  Google Scholar 

  15. Castro-Puche, R.: Álgebra Moderna e Introducción al Álgebra Geométrica. Editorial Ecoe, Mexico (2013)

    Google Scholar 

  16. Czarnecki, L.S.: What is wrong with the conservative power theory (CPT). In: International conference on applied and theoretical electricity, Craiova, pp. 1–6 (2016)

  17. Czarnecki, L.S.: Considerations on the reactive power in nonsinusoidal situations. IEEE Trans. Instrum. Meas. 34, 399–404 (1985)

    Article  Google Scholar 

  18. Czarnecki, L.S.: What is wrong with the Budeanu concept of reactive and distortion power and why it should be abandoned. IEEE Trans. Instrum. Meas 36(3), 834–837 (1987)

    Article  Google Scholar 

  19. Czarnecki, L.S.: Scattered and reactive current, voltage, and power in circuits with nonsinusoidal waveforms and their compensation. IEEE Trans. Instrum. Meas. 40, 563–574 (1991)

    Article  Google Scholar 

  20. Czarnecki, L.S.: Comments on apparent power—a misleading quantity in non-sinusoidal power theory: are all non-sinusoidal power theories doomed to fail? ETEP 4, 427–432 (1994)

    Article  Google Scholar 

  21. Czarnecki, L.S.: Comments on apparent and reactive powers in three-phase systems: in search of a physical meaning and a better resolution. Intl. Trans. Electr. Energy Syst. 4(5), 421–426 (1994)

    Google Scholar 

  22. Czarnecki, L.S.: On some misinterpretations of the instantaneous reactive power p-q theory. IEEE Trans. Power Electron. 19(3), 828–836 (2004)

    Article  ADS  Google Scholar 

  23. Czarnecki, L.: Working, reflected and detrimental active powers. IET Gener. Transm. Distrib. 6, 233–239 (2012)

    Article  Google Scholar 

  24. Czarnecki, L.S.: Constraints of instantaneous reactive power p-q theory. IET Power Electron. 7(9), 2201–2208 (2014)

    Article  Google Scholar 

  25. Czarnecki, L.S., Almousa, M.: What is wrong with the paper ‘The IEEE standard 1459, the CPC power theory and geometric algebra in circuits with nonsinusoidal sources and linear loads’’? PRZEGLAD ELEKTROTECHNICZNY 7(2020), 1–7 (2020). https://doi.org/10.15199/48.2020.07.01

    Article  Google Scholar 

  26. de Leon, F.J., Cohen, J.: AC power theory from Poynting theorem: accurate identification of instantaneous power components in nonlinear-switched circuits. IEEE Trans. Power Deliv. 25(4), 2104–2112 (2010)

    Article  Google Scholar 

  27. de Sabbata, V., Datta, B.K.: Geometric Algebra and Applications to Physics. Taylor-Francis, Routledge (2006)

    Book  Google Scholar 

  28. Depenbrock, M.: The FBD-method, a generally applicable tool for analyzing power relations. In: ICHPS V international conference on harmonics in power systems, pp. 135–141 (1992)

  29. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  30. Emanuel, A.E.: Apparent and reactive powers in three-phase systems: in search of a physical meaning and a better resolution. ETEP 3, 7–14 (1993)

    Article  Google Scholar 

  31. Emanuel, A.: Power Definitions and the Physical Mechanism of Power Flow. Wiley, Hoboken (2010)

    Book  Google Scholar 

  32. Ferrero, A.: Definitions of electrical quantities commonly used in non-sinusoidal conditions. ETEP 8, 235–240 (1998)

    Article  Google Scholar 

  33. Filipski, P.S.: Apparent power—a misleading quantity in the non-sinusoidal power theory: are all non-sinusoidal power theories doomed to fail? ETEP 3, 21–26 (1993)

    Article  Google Scholar 

  34. Fryze, S.: Active, reactive and apparent power in circuits with non-sinusoidal voltages and currents. Przeglad Elektrotechniczny 7, 193–203 (1931)

    Google Scholar 

  35. Ghassemi, F.: What is wrong with electric power theory and how it should be modified. In: IEE Ninth international conference on metering and tariffs for energy supply, pp. 109–114 (1999)

  36. Gimbel, S.: Exploring the Scientific Method. The University of Chicago Press, Chicago (2011)

    Book  Google Scholar 

  37. Herstein, I.: Abstract Algebra. Prentice-Hall, Mexico (1970)

    MATH  Google Scholar 

  38. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Kluwer Academic, New York (1987)

    MATH  Google Scholar 

  39. Hurley, P.J.: A Concise Introduction to Logic, 10th edn. State University of New York, New York (2006)

    MATH  Google Scholar 

  40. Korjani, S., Facchini, A., Mureddu, M., Caldarelli, G., Damiano, A.: Optimal positioning of storage systems in microgrids based on complex networks centrality measures. Sci. Rep. 8, 1–8 (2018)

    Article  Google Scholar 

  41. Lesh, R., Galbraith, P.L., Haines, C., Hurford, A.: Modeling Students’ Mathematical Modeling Competencies. Springer, Berlin (2009)

    MATH  Google Scholar 

  42. Munson, R.: The Way of Words: An Informal Logic. Houghton Mifflin Company, Boston (1976)

    Google Scholar 

  43. Oppenheim, A.V., Willsky, A., Young, I.T.: Signals and Systems. Prentice-Hall, New York (1983)

    MATH  Google Scholar 

  44. Penfield, P., Spence, R., Duinker, S.: A generalized form of Tellegen’s theorem. IEEE Trans. Circuits Syst. 17, 302–305 (1970)

    MathSciNet  Google Scholar 

  45. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, Berlin (2009)

    MATH  Google Scholar 

  46. Petroianu, A.I.: A geometric algebra reformulation and interpretation of Steinmetz’s symbolic method and his power expression in alternating current electrical circuits. Electr. Eng. 97(3), 175–180 (2015)

    Article  Google Scholar 

  47. Scott, D.E.: An Introduction to Circuit Analysis—A Systems Approach. McGraw Hill, New York (1987)

    Google Scholar 

  48. Shenkman, A.: Circuit Analysis for Power Engineering Handbook. Springer, Berlin (2008)

    Google Scholar 

  49. Shepherd, W., Zand, P.: Energy Flow and Power Factor in Nonsinusoidal Circuits. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  50. Steinmetz, C.P.: Does phase displacement occur in the current of electric arcs? Elektrotechnische Zeitschrift 42, 567–568 (1892)

    Google Scholar 

  51. Tamrakar, S., Conrath, M., Kettemann, S.: Propagation of disturbances in AC electricity grids. Nat. Sci. Rep. 8, 6459 (2018)

    ADS  Google Scholar 

  52. Tellegen, B.D.H.: A general network theorem with applications. Philips Res. Rep. 7, 259–269 (1952)

    MathSciNet  MATH  Google Scholar 

  53. Willems, J.L.: Active current, reactive current, Kirchhoff’s laws and Tellegen theorem. Electr. Power Qual. Util. 13, 5–8 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to El Roi. Dr. Jaime Castro Núñez, Valery Castro-Londoño and Daniel Castro-Londoño are also thanked for their unconditional support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the ENGAGE 2019 Topical Collection on Geometric Algebra for Computing, Graphics and Engineering edited by Linwang Yuan (EiC), Werner Benger, Dietmar Hildenbrand, and Eckhard Hitzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Núñez, M., Londoño-Monsalve, D. & Castro-Puche, R. M, The Power Definition in Geometric Algebra that Unveils the Shortcomings of the Nonsinusoidal Apparent Power S. Adv. Appl. Clifford Algebras 32, 18 (2022). https://doi.org/10.1007/s00006-022-01200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-022-01200-8

Keywords

Mathematics Subject Classification

Navigation