Skip to main content
Log in

Linear Canonical Wavelet Transform in Quaternion Domains

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The well-known quaternion algebra is a four-dimensional natural extension of the field of complex numbers and plays a significant role in various aspects of signal processing, particularly for representing signals wherein several instincts are to be controlled simultaneously. For efficient analysis of such quaternionic signals, we introduce the notion of linear canonical wavelet transform in quaternion domain by invoking the elegant convolution structure associated with the quaternion linear canonical transform. The preliminary analysis encompasses the study of fundamental properties of the proposed linear canonical wavelet transform in quaternion domain including the Rayleigh’s theorem, inversion formula and a characterization of the range. Subsequently, we formulate three uncertainty principles; viz, Heisenberg-type, logarithmic and local uncertainty inequalities associated with the linear canonical wavelet transform in quaternion domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akila, L., Roopkumar, R.: Ridgelet transform on quaternion valued functions. Int. J. Wavelets Multiresolut. Inf. Process. 14, 1650006 (2016)

    Article  MathSciNet  Google Scholar 

  2. Akila, L., Roopkumar, R.: Quaternionic Stockwell transform. Integ. Transf. Spec. Funct. 27(6), 484–504 (2016)

    Article  MathSciNet  Google Scholar 

  3. Akila, L., Roopkumar, R.: Quaternionic curvelet transform. Optik. 131, 255–266 (2017)

    Article  ADS  Google Scholar 

  4. Antoine, J.P., Murenzi, R.: Two-dimensional directional wavelet and the scale-angle representation. Signal Process. 52(3), 259–281 (1996)

    Article  Google Scholar 

  5. Bahri, M., Ashino, R., Vaillancourt, R.: Continuous quaternion Fourier and wavelet transforms. Int. J. Wavelets Multiresolut. Inf. Process. 12, 1460003 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bahri, M., Ashino, R.: A simplified proof of uncertainty principle for quaternion linear canonical transform. Abstr. Appl. Anal. Article ID 5874930, (2016)

  7. Bahri, M., Resnawati, Musdalifah, S.: A version of uncertainty principle for quaternion linear canonical transform. Abstr. App. Anal. Article ID 8732457, (2018)

  8. Bahri, M., Ryuichi, A.: Logarithmic uncertainty principle for quaternionic linear canonical tranform. In: ’ ’Inter. Conference on Wavelet Aalysis and Pattern Recognition (ICWAPR), 140–145, (2019)

  9. Corrochano, E.B.: The theory and use of the quaternion wavelet transform. J. Math. Imag. Vis. 24(1), 19–35 (2006)

    Article  MathSciNet  Google Scholar 

  10. Debnath, L., Shah, F.A.: Wavelet transforms and their applications. Birkhäuser, New York (2015)

    MATH  Google Scholar 

  11. Debnath, L., Shah, F.A.: Lectuer notes on wavelet transforms. Birkhäuser, Boston (2017)

    Book  Google Scholar 

  12. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3, 207–238 (1997)

    Article  MathSciNet  Google Scholar 

  13. Gao, W.B., Li, B.Z.: Quaternion windowed linear canonical transform of two-dimensional signals. Adv. Appl. Clifford Algebras. 30, (2020). https://doi.org/10.1007/s00006-020-1042-4

  14. Guo, Y., Li, B.Z.: The linear canonical wavelet transform on some function spaces. Int. J. Wavelets Multiresolut. Inf. Process. 16(1), 1850010 (2018). https://doi.org/10.1142/S0219691318500108

    Article  MathSciNet  MATH  Google Scholar 

  15. Hitzer, E., Sangwine, S.J.: Quaternion and clifford fourier transforms and wavelets. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  16. Kou, K.I., Xu, R.H.: Windowed linear canonical transform and its applications. Signal Process. 92(1), 179–188 (2012)

    Article  Google Scholar 

  17. Kou, K.I., Ou, J., Morais, J.: Uncertainty principle for quaternion linear canonical transform. Abstr. App. Anal. 24121, (2013)

  18. Kou, K.I., Morais, J.: Asymptotic behaviour of the quaternion linear canonical transform and the Bochner–Minlos theorem. Appl. Math. Comput. 247(15), 675–688 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Marks, R.J.: Advanced topics in shannon sampling and interpolation theory. Springer-Verlag, (1993)

  20. Moshinsky, M., Quesne, C.: Linear canonical transformations and their unitary representations. J. Math. Phys. 12(8), 1772–1780 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  21. Morais, J.P., Georgiev, S., Sproßig, W.: Real quaternionic calculus handbook. Birkhäuser, Basel (2014)

    Book  Google Scholar 

  22. Price, J.F.: Inequalities and local uncertainty principles. J. Math. Phys. 24, 1711 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  23. Shah, F.A., Tantary, A.Y.: Quaternionic Shearlet transform. Optik. 175, 115–125 (2018)

    Article  ADS  Google Scholar 

  24. Shah, F.A., Teali, A.A., Tantary, A.Y.: Windowed special affine Fourier transform. J. Pseudo-Differ. Oper. Appl. 11, 13891420 (2020)

    Article  MathSciNet  Google Scholar 

  25. Shah, F.A., Tantary, A.Y.: Linear canonical Stockwell transform. J. Math. Anal. Appl. 443, 1–28 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Shah, F.A., Teali, A.A., Tantary, A.Y.: Special affine wavelet transform and the corresponding Poisson summation formula. Int. J. Wavelets Multiresolut. Inf. Process. (2021). https://doi.org/10.1142/S0219691320500861

  27. Wang, J., Wang, Y., et al.: Discrete linear canonical wavelet transform and its applications. EURASIP J. Adv. Signal Process. 29, (2018). https://doi.org/10.1186/s13634-018-0550-z

  28. Wei, D., Li, Y.: Generalized wavelet transform based on the convolution operator in the linear canonical transform domain. Optik. 125(16), 4491–4496 (2014)

    Article  ADS  Google Scholar 

  29. Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform. Doc. Math. 5, 201–226 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Xu, T.Z., Li, B.Z.: Linear canonical transform and its applications. Science Press, Beijing (2013)

    Google Scholar 

Download references

Acknowledgements

The first author is supported by SERB (DST), Government of India, Grant No. EMR/2016/007951.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdous A. Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Wolfgang Sprössig

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, F.A., Teali, A.A. & Tantary, A.Y. Linear Canonical Wavelet Transform in Quaternion Domains. Adv. Appl. Clifford Algebras 31, 42 (2021). https://doi.org/10.1007/s00006-021-01142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-021-01142-7

Keywords

Mathematics Subject Classification

Navigation