Skip to main content
Log in

Star Product for Para-Grassmann Algebra of Order Two

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In para-Grassmann algebra a noncommutative, associative star product \(*\) (the Moyal product), which is a direct generalization of the star product in the algebra of Grassmann numbers is introduced. Isomorphism between the algebra of para-Grassmann numbers of order two equipped with the star product and the algebra of creation and annihilation operators \(a_{k}^{\pm }\) obeying the para-Fermi statistics of the same order is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the completeness of the picture it is necessary to mention another way for a generalization of Grassmann algebra based on bilinear relations of the type

    $$\begin{aligned} \xi _{i}\xi _{j} = q \xi _{j}\xi _{i}, \end{aligned}$$

    where q is a primitive root of unity such that \(q^{p + 1} = 1,\, p = 1, 2,\ldots \;\). This extension of a Grassmann algebra sometimes is called the generalized Grassmann algebra to distinguish it from the proper para-Grassmann algebra (see, for example, [2, 10, 12, 13, 18, 21]). In the present work we will not use the generalized Grassmann algebra because the para-Grassmann algebra of order \(p=2\) is still quite visible for concrete calculations, however, probably in the situation of higher order (\(p\ge 3\)) algebras this generalization is more suitable. The latter case implies the use of bilinear commutation relations for the so-called q-fermion creation and annihilation operators \(a^{\pm }_{k}\) [2].

  2. We follow the notations of the right and left derivatives adopted in [4].

  3. We recall that N designates the number of the generating elements in a para-Grassmann algebra and the number of the parafermion creation and annihilation operators of para-Fermi algebra. For \(N = 2\) we have two pairs of Grassmann variables in involution, \((\xi _1, \xi _2)\) and \((\bar{\xi }_1, \bar{\xi }_2)\), and two pairs of the parafermion creation and annihilation operators, \((a_{1}^{+}, a_{2}^{+})\) and \((a_{1}^{-}, a_{2}^{-})\).

  4. The only thing we have to use is a general expression for the measure of integration, namely, \((d\mu )_{p}(d\bar{\mu })_{p}\), where now

    $$\begin{aligned} (d\mu )_{p}\equiv d^{p\!}\mu _{N} d^{p\!}\mu _{N-1}\ldots d^{p\!}\mu _{1}, \qquad (d\bar{\mu })_{p}\equiv d^{p}\bar{\mu }_{1} d^{p}\bar{\mu }_{2}\ldots d^{p}\bar{\mu }_{N}. \end{aligned}$$

References

  1. Alexanian, G., Pinzul, A., Stem, A.: Generalized coherent state approach to star products and applications to the fuzzy sphere. Nucl. Phys. B 600, 531–547 (2001). https://doi.org/10.1016/S0550-3213(00)00743-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Baulieu, L., Floratos, E.G.: Path integral on the quantum plane. Phys. Lett. B 258, 171–178 (1991). https://doi.org/10.1016/0370-2693(91)91227-M

    Article  ADS  MathSciNet  Google Scholar 

  3. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. II. Physical applications. Ann. Phys. 110, 111–151 (1978). https://doi.org/10.1016/0003-4916(78)90225-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Berezin, F.A.: Introduction in superanalysis. In: Kirillov, A.A. (eds.) Kluwer Academic Publishers, Dordrecht (1987)

  5. Bogolyubov, N.N., Logunov, A.A., Oksac, A.I., Todorov, I.T.: General Principles of Quantum Field Theory. Kluwer Academic Publishers, Dordrecht (1989)

    Google Scholar 

  6. Bracken, A.J., Green, H.S.: Identities for para-Fermi statistics of given order. Nuovo Cimento A 9, 349–365 (1972). https://doi.org/10.1007/BF02789725

    Article  ADS  Google Scholar 

  7. Chernikov, N.A.: The Fock representation of the Duffin–Kemmer algebra. Acta Phys. Pol. 21, 51–60 (1962)

    MATH  Google Scholar 

  8. Daoud, M.: Covariance of the Grassmann star product. Rep. Math. Phys. 52, 281–294 (2003). https://doi.org/10.1016/S0034-4877(03)90017-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Daoud, M., Kinani, E.H.E.: The Moyal bracket in the coherent states framework. J. Phys. A Math. Gen. 35, 2639–2648 (2002). https://doi.org/10.1088/0305-4470/35/11/310

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. de Traubenberg, M.R.: Clifford algebras of polynomials, generalized Grassmann algebras and \(q\)-deformed Heisenberg algebras. Adv. Appl. Clifford Algebras 4, 131–144 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Duffin, R.J.: On the characteristic matrices of covariant systems. Phys. Rev. 54, 1114 (1938). https://doi.org/10.1103/PhysRev.54.1114

    Article  ADS  MATH  Google Scholar 

  12. Filippov, A.T., Isaev, A.P., Kurdikov, A.B.: Para-Grassmann analysis and quantum group. Mod. Phys. Lett. A 7, 2129–2141 (1992). https://doi.org/10.1142/S0217732392001877

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Filippov, A.T., Isaev, A.P., Kurdikov, A.B.: Paragrassmann differential calculus. Theor. Math. Phys. 94, 150–165 (1993). https://doi.org/10.1007/BF01019327

    Article  MATH  Google Scholar 

  14. Geyer, B.: On the generalization of canonical commutation relations with respect to the orthogonal group in even dimensions. Nucl. Phys. B 8, 326–332 (1968). https://doi.org/10.1016/0550-3213(68)90245-9

    Article  ADS  MathSciNet  Google Scholar 

  15. Green, H.S.: A generalized method of field quantization. Phys. Rev. 90, 270–273 (1953). https://doi.org/10.1103/PhysRev.90.270

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Greenberg, O.W., Mishra, A.K.: Path integrals for parastatistics. Phys. Rev. D 70, 125013 (2004). https://doi.org/10.1103/PhysRevD.70.125013

    Article  ADS  MathSciNet  Google Scholar 

  17. Hirshfeld, A.C., Henselder, P.: Deformation quantization for systems with fermions. Ann. Phys. 302, 59–77 (2002). https://doi.org/10.1006/aphy.2002.6302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Isaev, A.P.: Para-Grassmann integral, discrete systems and quantum groups. Int. J. Mod. Phys. A 12, 201–206 (1997). https://doi.org/10.1142/S0217751X97000281

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kamefuchi, S., Takahashi, Y.: A generalization of field quantization and statistics. Nucl. Phys. 36, 177–206 (1962). https://doi.org/10.1016/0029-5582(62)90447-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Kemmer, N.: The particle aspect of meson theory. Proc. R. Soc. A 173, 91–116 (1939). https://doi.org/10.1098/rspa.1939.0131

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kwasniewski, A.K.: Clifford and Grassmannlike algebras–old and new. J. Math. Phys. 26, 2234–2238 (1985). https://doi.org/10.1063/1.526853

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kálnay, A.J.: A note on Grassmann algebras. Rep. Math. Phys. 9, 9–13 (1976). https://doi.org/10.1016/0034-4877(76)90013-6

    Article  ADS  MATH  Google Scholar 

  23. Markov, Y.A., Markova, M.A., Bondarenko, A.I.: Path integral representation for inverse third order wave operator within the Duffin–Kemmer–Petiau formalism. I. J. High Energy Phys. 7, 094 (2020). https://doi.org/10.1007/JHEP07(2020)094

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Markov, Y.A., Markova, M.A.: Generalization of Geyer’s commutation relations with respect to the orthogonal group in even dimensions. Eur. Phys. J. C 80, 1153 (2020). https://doi.org/10.1140/epjc/s10052-020-08605-4

    Article  ADS  Google Scholar 

  25. Martin, J.L.: The Feynman principle for a Fermi system. Proc. R. Soc. A (Lond.) 251, 543–549 (1959). https://doi.org/10.1098/rspa.1959.0127

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Morinaga, K., Nōno, T.: On the linearization of a form of higher degree and its representation. J. Sci. Hiroshima Univ. Ser. A 16, 13–41 (1952). https://doi.org/10.32917/hmj/1557367250

    Article  MathSciNet  MATH  Google Scholar 

  27. Morris, A.O.: On a generalized Clifford algebra. Q. J. Math. Oxf. 18, 7–12 (1967). https://doi.org/10.1093/qmath/18.1.7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Ohnuki, Y., Kamefuchi, S.: Para-Grassmann algebras with applications to para-Fermi systems. J. Math. Phys. 21, 609–616 (1980). https://doi.org/10.1063/1.524505

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Ohnuku, Y., Kashiwa, T.: Coherent states of Fermi operators and the path integral. Prog. Theor. Phys. 60, 548–564 (1978). https://doi.org/10.1143/PTP.60.548

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Omote, M., Kamefuchi, S.: Paragrassmann algebras and para-Fermi systems. Lett. Nuovo Cimento 24, 345–350 (1979). https://doi.org/10.1007/BF02724855

    Article  MathSciNet  Google Scholar 

  31. Petiau, G.: Contribution à l’étude des équations d’ondes corpusculaires Ph.D. Thesis, University of Paris (1936); Acad. R. de Belg. A. Sci. Mem. Collect. XVI, 118 (1936). https://doi.org/10.1098/rspa.1939.0131

  32. Polychronakos, A.P.: Path integrals and parastatistics. Nucl. Phys. B 474, 529–539 (1996). https://doi.org/10.1016/0550-3213(96)00277-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Ramakrishnan, A., Vasudevan, R., Chandrasekaran, P.S., Ranganathan, N.R.: Kemmer algebra from generalized Clifford elements. J. Math. Anal. Appl. 28, 108–111 (1969). https://doi.org/10.1016/0022-247X(69)90113-9

    Article  MathSciNet  Google Scholar 

  34. Ryan, C., Sudarshan, E.C.G.: Representations of parafermi rings. Nucl. Phys. 47, 207–211 (1963). https://doi.org/10.1016/0029-5582(63)90865-4

    Article  MathSciNet  Google Scholar 

  35. Scharfstein, H.: Trilinear commutation relations between fields. Nuovo Cimento 30, 740–761 (1963). https://doi.org/10.1007/BF02750411

    Article  MathSciNet  Google Scholar 

  36. Smilga, A.V.: Quasiclassical expansion for \(Tr\{(-1)^{F}{\rm e}^{-\beta H}\}\). Commun. Math. Phys. 230, 245–269 (2002). https://doi.org/10.1007/s00220-002-0673-8

    Article  ADS  MathSciNet  Google Scholar 

  37. Tyutin, I.V.: General form of the \(*\)-commutator on the Grassmann algebra. Theor. Math. Phys. 128, 1271–1292 (2001). https://doi.org/10.1023/A:1012320121612

    Article  MathSciNet  MATH  Google Scholar 

  38. Volkov, D.V.: On the quantization of half-integer spin fields. Sov. Phys. JETP 36, 1107–1111 (1959). https://doi.org/10.1007/BFb0105265

    Article  MathSciNet  MATH  Google Scholar 

  39. Yamazaki, K.: On projective representations and ring extensions of finite groups. J. Fac. Sci. Univ. Tokyo Sect. 1 10, 147–195 (1964). https://doi.org/10.15083/00039898

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewer for careful reading of the first version of the article and for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Markov.

Additional information

Communicated by Roldão da Rocha.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Para-Grassmann differentiation

Appendix: Para-Grassmann differentiation

In this Appendix we derive a number of particular differentiation rules. In the special case of \(p = 2\) from the formulae (2.5)–(2.7) the expression for the right derivative follows

$$\begin{aligned} \frac{\overrightarrow{\partial }}{\partial \xi _{k}}\, ( \bar{\mu }_{j}\xi _{i}) \equiv -\frac{1}{2}\,\frac{\overrightarrow{\partial }}{\partial \xi _{k}}\, [\xi _{i}, \bar{\mu }_{j}] + \frac{1}{2}\,\frac{\overrightarrow{\partial }}{\partial \xi _{k}}\, \{\xi _{i}, \bar{\mu }_{j}\} = -\delta _{ki}\bar{\mu }_{j} + \delta _{ki}\bar{\mu }_{j} = 0, \end{aligned}$$

and similarly for the left derivative we get

$$\begin{aligned} (\xi _{i} \bar{\mu }_{j}) \frac{\overleftarrow{\partial }}{\partial \xi _{k}} \equiv \frac{1}{2}\,[\xi _{i}, \bar{\mu }_{j}]\, \frac{\overleftarrow{\partial }}{\partial \xi _{k}} + \frac{1}{2}\,\{\xi _{i}, \bar{\mu }_{j}\}\, \frac{\overleftarrow{\partial }}{\partial \xi _{k}} = -\bar{\mu }_{j}\delta _{ki} + \bar{\mu }_{j}\delta _{ki} = 0. \end{aligned}$$

By this mean we have

$$\begin{aligned} \frac{\overrightarrow{\partial }}{\partial \xi _{k}}\, ( \bar{\mu }_{j}\xi _{i}) = 0, \quad (\xi _{i} \bar{\mu }_{j}) \frac{\overleftarrow{\partial }}{\partial \xi _{k}} = 0. \end{aligned}$$
(A.1)

The fact that these derivatives vanish is a distinguishing feature of the case \(p = 2\). For \(p\ne 2\) these derivatives always are different from zero, for example,

$$\begin{aligned} \text{ for }\;\; p = 1:\quad \frac{\overrightarrow{\partial }}{\partial \xi _{1}}\, (\bar{\mu }_{j}\xi _{1}) = -\bar{\mu }_{j}; \qquad \text{ for }\;\; p = 3:\quad \frac{\overrightarrow{\partial }}{\partial \xi _{1}}\, (\bar{\mu }_{j}\xi _{1}) = \bar{\mu }_{j} \end{aligned}$$

etc. In addition to (A.1) for \(p = 2\) we also can write

$$\begin{aligned} \frac{\overrightarrow{\partial }}{\partial \xi _{k}}\, (\xi _{i}\bar{\mu }_{j}) = 2\delta _{ik}\bar{\mu }_{j}, \quad (\bar{\mu }_{j}\xi _{i}) \frac{\overleftarrow{\partial }}{\partial \xi _{k}} = 2\delta _{ik}\bar{\mu }_{j} \end{aligned}$$
(A.2)

and as a consequence of (A.1) and (A.2) we have

$$\begin{aligned} \frac{\overrightarrow{\partial }}{\partial \xi _{k}}\, (\xi _{j}\xi _{i}) = 2\delta _{kj}\xi _{i}, \quad (\xi _{i}\xi _{j}) \frac{\overleftarrow{\partial }}{\partial \xi _{k}} = 2\delta _{kj}\xi _{i}. \end{aligned}$$
(A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, Y., Markova, M. Star Product for Para-Grassmann Algebra of Order Two. Adv. Appl. Clifford Algebras 31, 27 (2021). https://doi.org/10.1007/s00006-021-01125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-021-01125-8

Keywords

Mathematics Subject Classification

Navigation