Skip to main content
Log in

Geometric Algebra to Describe the Exact Discretizable Molecular Distance Geometry Problem for an Arbitrary Dimension

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The K-Discretizable Molecular Distance Geometry Problem (\(^{\textit{K}}\hbox {DMDGP}\)) is a subclass of the Distance Geometry Problem (DGP), whose complexity is NP-hard, such that the search space is finite. In this work, the authors describe it completely using Conformal Geometric Algebra (CGA), exploring a Minkowski space that provides a natural interpretation of hyperspheres, hyperplanes, points and pair of points as computational primitives, which are largely relevant to the \(^{\textit{K}}\hbox {DMDGP}\). It also presents a theoretical approach to solve the \(^{\textit{K}}\hbox {DMDGP}\) using ideas from classic Branch-and-Prune (BP) algorithm in this new fashion. Time complexity analysis and practical computational results showed that the naive implementation of the CGA is not as efficient as classical formulation. In order to illustrate this, preliminary results are displayed at the end and, also, directions to future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alves, R., Lavor, C.: Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebra 27, 439–452 (2017)

    Article  MathSciNet  Google Scholar 

  2. Alves, R., Lavor, C., Souza, C., Souza, M.: Clifford algebra and discretizable distance geometry. Math. Methods Appl. Sci. 41, 4063–4073 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. Andreas, W.M.D., Havel, T.F.: Distance geometry and geometric algebra. Found. Phys. 23(10), 1357–1374 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)

    Article  MathSciNet  Google Scholar 

  5. Charrier, P., Klimek, M., Steinmetz, C., Hildenbrand, D.: Geometric algebra enhanced precompiler for C++, OpenCL and Mathematica’s OpenCLLink. Adv. Appl. Clifford Algebras 24(2), 613–630 (2014)

    Article  Google Scholar 

  6. Coope, I.: Reliable computation of the points of intersection of n spheres in n-space. ANZIAM J. 42, 461–477 (2000)

    Article  MathSciNet  Google Scholar 

  7. Crippen, G., Havel, T.: Distance Geometry and Molecular Conformation. Research Studies Press Ltda, New York (1988)

    MATH  Google Scholar 

  8. Dorst, L.: Boolean combination of circular arcs using orthogonal spheres. Adv. Appl. Clifford Algebra 29 (2019) (online)

  9. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry (The Morgan Kaufmann Series in Computer Graphics). Morgan Kaufmann Publishers Inc., (2007)

  10. Dubbs, C., Siegel, D.: Computing determinants. Coll. Math. J. 18(1), 48–50 (1987)

    Article  Google Scholar 

  11. Faria, V.R., Castelani, E.V., da Silva, J., Camargo, V.S., Shirabayashi, W.V.I. evcastelani/liga.jl dev version. GitHub Repository: https://github.com/evcastelani/Liga.jl (2018)

  12. Fernandes, L.A.F.: Geometric Algebra Template Library. GitHub Repository. https://github.com/laffernandes/gatl (2017)

  13. Fidalgo, F., Gonçalves, D., Lavor, C., Liberti, L., Mucherino, A.: A symmetry-based splitting strategy for discretizable distance geometry problems. J. Glob. Optim. 71, 717–733 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gonçalves, D.S.: A least-squares approach for discretizable distance geometry problems with inexact distances. Optim. Lett. (2017) (to appear)

  15. Grassmann, H.: Die Lineale Ausdehnungslehre. Verlag von Otto Wigand, Leipzig (1878)

    Google Scholar 

  16. Lavor, C., Alves, R.: Oriented conformal geometric algebra and the molecular distance geometry problem. Adv. Appl. Clifford Algebra 29, 439–452 (2019)

    Article  MathSciNet  Google Scholar 

  17. Lavor, C., Alves, R., Figueiredo, W., Petraglia, A., Maculan, N.: Clifford algebra and the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebra 25, 925–942 (2015)

    Article  MathSciNet  Google Scholar 

  18. Lavor, C., Liberti, L., Maculan, N.: A note on a branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 18(6), 751–752 (2011)

    Article  MathSciNet  Google Scholar 

  19. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)

    Article  MathSciNet  Google Scholar 

  20. Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras, pp. 27–59. Springer, Berlin (2001)

    Chapter  Google Scholar 

  21. Liberti, L.: Private communication, may (2019)

  22. Liberti, L., Lavor, C.: Euclidean Distance Geometry: An Introduction. Springer, Cham, Switzerland (2017)

    Book  Google Scholar 

  23. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15(1), 1–17. Janeiro (2008)

  24. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  MathSciNet  Google Scholar 

  25. Liberti, L., Masson, B., Lee, J., Lavor, C., Mucherino, A.: On the number of realizations of certain henneberg graphs arising in protein conformation. Disc. Appl. Math. (2013) (Article in Press)

  26. Maioli, D.S., Lavor, C., Gonçalves, D.S.: A note on computing the intersection of spheres in \({\mathbb{R}}^{n}\). ANZIAM J. 59(2), 271–279 (2017)

    Article  MathSciNet  Google Scholar 

  27. Moré, J. J., W. Z.: Global continuation for distance geometry problems. SIAM J. Comput. 7(3), 814–836 (1997)

    Article  MathSciNet  Google Scholar 

  28. Moré, J. J., W.Z.: Distance geometry optimization for protein structures. J. Glob. Optim. 15(3), 219–234 (1999)

  29. Mucherino, A., Lavor, C., Liberti, L.: Exploiting symmetry properties of the discretizable molecular distance geometry problem. J. Bioinf. Comput. Biol. 10, 3 (2012)

    Article  Google Scholar 

  30. Perwass, C.B.U.: Geometric Algebra with Applications in Engineering. Springer, Berlin (2009)

    MATH  Google Scholar 

  31. Rojas, N., Thomas, F.: Distance-based position analysis of the three seven-link assur kinematic chains. Mech. Mach. Theory 46(2), 112–126 (2011)

    Article  Google Scholar 

  32. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly np-hard. In Proc. 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

  33. Watt, D.A., Findlay, W.: Programming language design concepts. Wiley, Hoboken (2004)

    Google Scholar 

  34. Worley, B., Delhommel, F., Cordier, F., Malliavin, T.E., Bardiaux, B., Wolff, N., Nilges, M., Lavor, C., Liberti, L.: Tuning interval branch-and-prune for protein structure determination. J. Glob. Optim. 72, 109–127 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq, FAPERJ, UFSC, UFF, and UEM for financial support and Leo Liberti for precious research information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Fidalgo.

Additional information

To our estimated colleague Waldyr Rodrigues, Jr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of AGACSE 2018, IMECC-UNICAMP, Campinas, Brazil, edited by Sebastià Xambó-Descamps and Carlile Lavor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, V.S., Castelani, E.V., Fernandes, L.A.F. et al. Geometric Algebra to Describe the Exact Discretizable Molecular Distance Geometry Problem for an Arbitrary Dimension. Adv. Appl. Clifford Algebras 29, 75 (2019). https://doi.org/10.1007/s00006-019-0995-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-019-0995-7

Keywords

Mathematics Subject Classification

Navigation