Skip to main content
Log in

Projective View on Motion Groups I: Kinematics and Relativity

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The paper provides a consistent study on the projective construction of low-dimensional motion groups starting with \(\mathrm {SO}(3)\) and then gradually extending to the Galilean and Lorentzian settings. In the case of spatial rotations one simply needs to consider \({{\mathbb {R}}}{{\mathbb {P}}}^3\) with an additional group structure inherited from quaternion multiplication, which allows for associating particular types of curves in \({\mathbb {E}}^3\) with rigid body kinematics, based on the corresponding Maurer–Cartan form. A similar construction in complex projective space yields the relativistic version of the above approach, while a dual extension leads respectively to the study of nonhomogeneous isometries. The text provides also plenty of examples as well as a brief discussion on possible further generalizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. we are dealing with an affine space, so canonical coordinates impose nontrivial restriction.

  2.  that is, factorizing the Clifford group of \(\mathrm{Cliff}_{1,3}^\circ \cong \mathrm{Cliff}_{0,3}^{}\) by its center, which is now \({\mathbb {C}}^\times \!\).

  3. related in the decomposable case to the Maxwell electromagnetic tensor in vacuum.

References

  1. Aste, A.: Complex representation theory of the electromagnetic field. J. Geom. Symmetry Phys. 28, 47–58 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Bauchau, O., Trainelli, L., Bottaso, C.: The vectorial parameterization of rotation. Nonlinear Dyn. 32, 71–92 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bayro-Corrochano, E.: Geometric Computing: For Wavelet Transforms. Learning, Control and Action. Robotic Vision. Springer, London (2010)

    Book  Google Scholar 

  4. Brezov, D., Mladenova, C., Mladenov, I.: From the kinematics of precession motion to generalized Rabi cycles. Adv. Math. Phys. (2018) (ID 9256320)

  5. Brezov, D.: Higher-dimensional representations of \({\rm SL}_2\) and its real forms via Plücker embedding. Adv. Appl. Clifford Al. 27, 2375–2392 (2017)

    Article  MathSciNet  Google Scholar 

  6. Brezov, D.: Projective bivector parametrization of isometries in low dimensions. Geom. Integrabil. Quant. 2018, 91–104 (2018)

    Article  MathSciNet  Google Scholar 

  7. Brezov, D., Mladenova, C., Mladenov, I.: Vector-parameters in classical hyperbolic geometry. J. Geom. Sym. Phys. 30, 21–50 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Brezov, D., Mladenova, C., Mladenov, I.: A decoupled solution to the generalized Euler decomposition problem in \({\mathbb{R}}^3\) and \({\mathbb{R}}^{2,1}\). J. Geom. Symmetry Phys. 33, 47–78 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Brezov, D., Mladenova, C., Mladenov, I.: Wigner rotation and thomas precession: geometric phases and related physical theories. J. Korean Phys. Soc. 66, 1656–1663 (2015)

    Article  ADS  Google Scholar 

  10. Chruśchiński, D., Jamiołkowski, A.: Geometric Phases in Classical and Quantum Mechanics. Birkhäuser, Boston (2004)

    Book  Google Scholar 

  11. Condurache, D., Burlacu, A.: Fractional order Cayley transforms for dual quaternions based pose representation. Adv. Astron. Sci. Ser. 156, 1317–1339 (2016)

    Google Scholar 

  12. da Rocha, R., Vaz Jr., J.: Conformal structures and twistors in the paravector model of spacetime. Int. J. Geom. Meth. Mod. Phys. 4, 547 (2008)

    Article  MathSciNet  Google Scholar 

  13. Delpenich, D.: Projective geometry and special relativity. Annal. Phys. 15, 216–246 (2006). arXiv:gr-qc/0512125

    Article  ADS  MathSciNet  Google Scholar 

  14. Fedorov, F.: Science. The Lorentz Group, Moscow (1979). (in Russian)

    Google Scholar 

  15. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, San Diego (1978)

    MATH  Google Scholar 

  16. Ivey, T., Landsberg, J.: Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems. AMS, Providence (2003)

    MATH  Google Scholar 

  17. Kassandrov, V.: Biquaternion electrodynamics and Weyl–Cartan geometry of space-time. Gravit. Cosmol. 3, 216–222 (1995)

    ADS  MATH  Google Scholar 

  18. Kuipers, J.: Quaternions and Rotation Sequences: A Primer with Applications to Orbits. Aerospace and Virtual Reality. Princeton University Press, Princeton (1999)

    MATH  Google Scholar 

  19. Kuvshinov, V., Tho, N.: Local vector parameters of groups, The cartan form and applications to Gauge and Chiral field theory. Phys. Elem. Part. At. Nucl. Lett. 25, 603–648 (1994)

    Google Scholar 

  20. Lenz, R.: Group Theoretical Methods in Image Processing. Springer, Berlin (1990)

    Book  Google Scholar 

  21. Lévay, P.: The geometry of entanglement: metrics, connections and the geometric phase. J. Phys. A Math. Gen. 37, 1821–1842 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lush, D.: The magnetic force as a kinematical consequence of the thomas precession. In: Progress In Electromagnetics Research Symposium Proceedings, Stockholm (2013), pp. 1203–1209

  23. Piña, E.: Rotations with Rodrigues’ vector. Eur. J. Phys. 32, 1171–1178 (2011)

    Article  Google Scholar 

  24. Rodrigues, O.: Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. J. Math. Pures Appl. 5, 380–440 (1840)

    Google Scholar 

  25. Shoemake, K.: Animating rotation with quaternion curves. Comput. Graph. 19, 245–254 (1985)

    Article  Google Scholar 

  26. Siminovitch, D.: Rotations in NMR: Part I. Euler–Rodrigues parameters and quaternions. Concepts Magn. Reson. 9, 149–171 (1997)

    Article  Google Scholar 

  27. Wittenburg, J.: Kinematics: Theory and Applications. Springer, Berlin (2016)

    Book  Google Scholar 

  28. Yücesan, A.N., Çöken, A.: On rectifying dual space curves. Rev. Mat. Complut. 20, 497–506 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to Professor José Vargas for his valuable remarks and the whole organizing team of the Alterman Conference and School on Clifford Algebras and Kähler Calculus (Milano 2018) for inviting me to give a talk at the event.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danail S. Brezov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on 2018 Alterman Conference/School on Geometric Algebra/Kahler Calculus, edited by Rodolfo Fiorini and Jose’ Vargas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brezov, D.S. Projective View on Motion Groups I: Kinematics and Relativity. Adv. Appl. Clifford Algebras 29, 47 (2019). https://doi.org/10.1007/s00006-019-0962-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-019-0962-3

Mathematics Subject Classification

Keywords

Navigation