Skip to main content
Log in

Clifford Algebras, Multipartite Systems and Gauge Theory Gravity

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper we present a multipartite formulation of gauge theory gravity based on the formalism of space–time algebra for gravitation developed by Lasenby and Doran (Philos Trans R Soc Lond A 582:356–487, 1998). We associate the gauge fields with a description of fermionic and bosonic states using the generalized graded tensor product. Einstein’s equations are deduced from the graded projections and an algebraic Hopf-like structure naturally emerges from formalism. A connection with quantum information theory is performed through the minimal left ideals and entangled qubits are derived. In addition, applications to black holes physics and standard model are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablamowicz, R., Fauser, B.: Clifford and Grassmann Hopf algebras via the BIGEBRA package for Maple. Comput. Phys. Commun. 170, 115–130 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. Baylis, W.E.: Quantum/classical interface: a geometric from the classical side. In: Byrnes, J. (ed.) Proceedings of the NATO Advanced Study Institute. Dordrecht Kluwer Academic, Dordrecht (2004)

  3. Bittencourt, A.S.V.V., Bernardini, A.E., Blasone, M.: Global Dirac bispinor entanglement under Lorentz boosts. Phys. Rev. A 97, 032106 (2018)

    Article  ADS  Google Scholar 

  4. Bittencourt, A.S.V.V., Bernardini, A.E., Blasone, M.: Bilayer graphene lattice-layer entanglement in the presence of non-Markovian phase noise. Phys. Rev. B 97, 125435 (2018)

    Article  ADS  Google Scholar 

  5. Bulacu, D.: A Clifford algebra is a weak Hopf algebra in a suitable symmetric monoidal category. J. Algebra 332, 244–284 (2011)

    Article  MathSciNet  Google Scholar 

  6. Castro, C.: Extended Lorentz transformations in Clifford space relativity theory. Adv. Appl. Clifford Algebras 25, 553–567 (2015)

    Article  MathSciNet  Google Scholar 

  7. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  8. Chiang, Hsu-Wen, Yoo-Chieh, Hu, Chen, Pisin: Quantization of space-time baased on a space time interval operator. Phys. Rev. D 93, 084043 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Da Rocha, R., Bernardini, A.E., Vaz Jr., J.: Int. J. Geom. Methods Mod. Phys. 07, 821 (2010)

    Article  Google Scholar 

  10. Doran, C.J.L.: Geometric Algebra and its Application to Mathematical Physics. PhD thesis, Cambridge University (1994)

  11. Faulkner, T., Guica, M., Hartman, T., Myers, R.C., Van Raamsdonk, M.: Gravitation from Entanglement in Holographic CFTs. JHEP 03, 051 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Fauser, B.: Quantum Clifford Hopf algebra for quantum field theory. Adv. Appl. Clifford Algebras 13, 115–125 (2003)

    Article  MathSciNet  Google Scholar 

  13. Fauser, B., Oziewicz, Z.: Clifford Hopf gebra for two-dimensional space. Miscellanea Algebraicae 5(2), 31–42 (2001)

    Google Scholar 

  14. Havel, T.F., Doran, C.J.: Interaction and entangled in the multiparticle spacetime algebra. In: Dorst, L., Doran, C.J., Lasenby, J. (eds.) Applications of Geometric Algebra in Computer Science and Engineering. Birkhauser, Basel (2002)

    Google Scholar 

  15. Hestenes, D.: Space Time Algebra. Gordon and Breach, New York (1996)

    MATH  Google Scholar 

  16. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Reidel, Dordrecht (1984)

    Book  Google Scholar 

  17. Kassel, C.: Quantum Groups. Springer-Verlag, New York (1995)

    Book  Google Scholar 

  18. Lasenby, A.N., Doran, C.J.L.: Geometric algebra, dirac wavefunctions and black holes. In: Bergmann P.G., de Sabbata V. (eds) Advances in the Interplay Between Quantum and Gravity Physics. NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol 60. Springer, Dordrecht (2002)

  19. Lasenby, A.N., Doran, C.J.L., Gull, S.F.: Gravity, gauge theories and geometric algebra. Philos. Trans. R. Soc. Lond. A 582, 356–487 (1998)

    MATH  Google Scholar 

  20. Lashkari, N., McDermott, M.B., Van Raamsdonk, M.: Gravitational dynamics from entanglement thermodynamics. JHEP 04, 195 (2014)

    Article  ADS  Google Scholar 

  21. Lashkari, N., Rabideau, C., Sabella-Garnier, P., Van Raamsdonk, M.: Inviolable energy conditions from entanglement inequalities. JHEP 06, 067 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lopez, E.: Quantum Clifford–Hopf algebras for even dimensions. J. Phys. A 27, 845–854 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lu, W.: A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies. Int. J. Mod. Phys. A 32, 1750159 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Majid, S.: Hopf algebras for physics at the Planck scale. Class. Quant. Grav. 5(12), 1587–1607 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  25. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  26. Martel, K., Poisson, E.: Regular coordinate systems for Schwarzschild and other spherical spacetimes. Am. J. Phys. 69, 476 (2001)

    Article  ADS  Google Scholar 

  27. Rodrigues Jr., W.A., Maiorino, J.E.: A unified theory for construction of arbitrary speeds \(0<v<\infty \) solutions of the relativistic wave equations. Random Oper. Stoch. Equ. 4, 355–400 (1996)

    Article  MathSciNet  Google Scholar 

  28. Rodrigues, W.A., Oliveira, E.C.: The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach. Springer, New York (2017)

    MATH  Google Scholar 

  29. Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. 12, 1040 (1968)

    ADS  Google Scholar 

  30. Thiemann, T.: Loop quantum gravity: an inside view. Approaches to fundamental physics. Lect. Notes Phys. 721, 185–263 (2006)

    Article  ADS  Google Scholar 

  31. Verlinde, E.P.: On the origin of gravity and the Laws of Newton. JHEP 1104, 029 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. Verlinde, E.P.: Emergent gravity and the dark universe. SciPost Phys. 2, 016 (2017)

    Article  ADS  Google Scholar 

  33. Zwiebach, B.: A First Course in String Theory. Cambridge University Press, New York (2004)

    Book  Google Scholar 

Download references

Acknowledgements

Eric Pinto thanks to FAPESB and CNPq for partial financial support. We would also like to thank the anonymous referees for their detailed comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Pinto.

Additional information

This article is part of the Topical Collection on Homage to Prof. W.A. Rodrigues Jr. edited by Jayme Vaz Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trindade, M.A.S., Pinto, E. & Floquet, S. Clifford Algebras, Multipartite Systems and Gauge Theory Gravity. Adv. Appl. Clifford Algebras 29, 1 (2019). https://doi.org/10.1007/s00006-018-0917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0917-0

Mathematics Subject Classification

Keywords

Navigation