Skip to main content
Log in

Analytical Mobility Analysis of Bennett Linkage Using Geometric Algebra

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

It has been challenging to obtain an analytical or closed-form expression of the motion space of a Bennet linkage because it is over-constrained and has complex geometric conditions. This paper presents an analytical mobility analysis of the Bennet linkage using geometric algebra. Frist, the Bennet linkage is regarded as a 2-RR (R: revolute joint) parallel mechanism and the limb motion space is the join of two twists associated with the two revolute pairs. Then, the motion space of the output link of the Bennet linkage is obtained by using meet operator to calculate the intersection of the two limb motion space. Compared to the constrained screw-based method, the use of a meet operator results in fewer steps, thus simplifying the computation. This intersection presents an analytical or symbolic expression of the motion space of the Bennet linkage with straightforward geometric interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdul-Sater, K., Winkler, M.M., Irlinger, F., Lueth, T.C.: Three-position synthesis of origami-evolved, spherically constrained spatial revolute-revolute chains. J. Mech. Robot. 8, 011012 (2016)

    Article  Google Scholar 

  2. Alizade, R.I., Kiper, G., Bagdadioglu, B., Dede, M.I.C.: Function synthesis of Bennett 6R mechanisms using Chebyshev approximation. Mech. Mach. Theory 81, 62–78 (2014)

    Article  Google Scholar 

  3. Aristidou, A., Lasenby, J.: FABRIK: a fast, iterative solver for the inverse kinematics problem. Graph Models 73, 243–260 (2011)

    Article  Google Scholar 

  4. Aristidou, A., Lasenby, J.: Inverse kinematics solutions using conformal geometric algebra. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice, pp. 47–62. Springer, London (2011)

    Chapter  Google Scholar 

  5. Baker, J.E.: The Bennett, Goldberg and Myard linkages–in perspective. Mech. Mach. Theory 14, 239–253 (1979)

    Article  Google Scholar 

  6. Baker, J.E.: The Bennett linkage and its associated quadric surfaces. Mech. Mach. Theory 23, 147–156 (1988)

    Article  ADS  Google Scholar 

  7. Baker, J.E.: A kinematic representation of Bennett’s tetrahedron reference. Proc. Inst. Mech. Eng. Part C 222, 1821–1827 (2008)

    Article  Google Scholar 

  8. Bayro-Corrochano, E.: Geometric Computing. Geometric Algebra for Modeling in Robot Physics. Springer, London (2010)

    Chapter  Google Scholar 

  9. Bennett, G.: A new mechanism. Engineering 76, 777–778 (1903)

    Google Scholar 

  10. Bennett, G.T.: The skew isogram mechanism. Proc. Lond. Math. Soc. 13, 151–173 (1914)

    Article  MathSciNet  Google Scholar 

  11. Bil, T.: Analysis of the Bennett linkage in the geometry of tori. Mech. Mach. Theory 53, 122–127 (2012)

    Article  Google Scholar 

  12. Bricard, R.: Leçons de cinématique, Gauthier-Villars (1926)

  13. Brunnthaler, K., Schröcker, H.-P., Husty, M.: A new method for the synthesis of Bennett mechanisms, International Workshop on Computational Kinematics (CK2005), pp. 4–6. Italy, May, Cassino (2005)

  14. Campos-Macías, L., Carbajal-Espinosa, O., Loukianov, A., Bayro-Corrochano, E.: Inverse kinematics for a 6-DOF walking humanoid robot leg. Advances in Applied Clifford Algebras. Springer, New York (2016)

    Google Scholar 

  15. Chen, Y.: Design of Structural Mechanisms, University of Oxford (2003)

  16. Dorst, L., Fontijne, D., Mann, S.: Geometric algebra for computer science (revised edition): An object-oriented approach to geometry, Morgan Kaufmann (2009)

  17. Gogu, G.: Mobility of mechanisms: a critical review. Mech. Mach. Theory 40, 1068–1097 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goldberg, M.: New 5-bar and 6-bar linkages in three dimensions. ASME J. Mech. 65, 649–661 (1943)

    MathSciNet  Google Scholar 

  19. Hervé, J.M.: Analyse structurelle des mécanismes par groupe des déplacements. Mech. Mach. Theory 13, 437–450 (1978)

    Article  Google Scholar 

  20. Hervé, J.M.: Principes fondamentaux d’une théorie des mécanismes. Rev. Roum. Sci. Tech., Ser. Mec. Appl 23, 693–709 (1978)

    MATH  Google Scholar 

  21. Hestenes, D.: New Foundations for Classical Mechanics. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  22. Hildenbrand, D., Zamora, J., Bayro-Corrochano, E.: Inverse kinematics computation in computer graphics and robotics using conformal geometric algebra. Adv. Appl. Clifford Algebras 18, 699–713 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hrdina, J., Návrat, A., Vašík, P.: Control of 3-Link Robotic Snake Based on Conformal Geometric Algebra. Adv. Appl. Clifford Algebras 26, 1069–1080 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, Z., Liu, J., Zeng, D.: A general methodology for mobility analysis of mechanisms based on constraint screw theory. Sci China Ser E 52, 1337–1347 (2009)

    Article  MATH  Google Scholar 

  25. Hunt, K.H.: Screw axes and mobility in spatial mechanisms via the linear complex. J. Mech. 2, 307–327 (1967)

    Article  Google Scholar 

  26. Kong, X.: Type Synthesis of Single-Loop Overconstrained 6R Spatial Mechanisms for Circular Translation. J. Mech. Robot. 6, 041016 (2014)

    Article  Google Scholar 

  27. Kong, X., Pfurner, M.: Type synthesis and reconfiguration analysis of a class of variable-DOF single-loop mechanisms. Mech. Mach. Theory 85, 116–128 (2015)

    Article  Google Scholar 

  28. Li, Q., Chai, X., Xiang, J.N.: Mobility analysis of limited-degrees-of-freedom parallel mechanisms in the framework of geometric algebra. J. Mech. Robot. 8, 041005 (2016)

    Article  Google Scholar 

  29. Liu, X., Zhao, J.S., Feng, Z.J.: Instantaneous motion and constraint analysis of Bennett linkage. Proc. Inst. Mech. Eng. Part C 230, 379–391 (2016)

    Article  Google Scholar 

  30. Myard, F.: Contribution à la géométrie des systèmes articulés. Bull. Soc. Math. Fr. 59, 183–210 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  31. Norton, R.L.: Design of machinery: an introduction to the synthesis and analysis of mechanisms and machines. McGraw-Hill, Boston (1999)

    Google Scholar 

  32. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, Berlin (2009)

    MATH  Google Scholar 

  33. Selig, J.M.: Geometric Fundamentals of Robotics. Springer, New York (2005)

    MATH  Google Scholar 

  34. Song, C.-Y., Feng, H., Chen, Y., Chen, I.M., Kang, R.: Reconfigurable mechanism generated from the network of Bennett linkages. Mech. Mach. Theory 88, 49–62 (2015)

    Article  Google Scholar 

  35. Staffetti, E.: Kinestatic analysis of robot manipulators using the Grassmann-Cayley algebra. IEEE Trans. Robot. Autom. 20, 200–210 (2004)

    Article  Google Scholar 

  36. Staffetti, E., Thomas, F.: Kinestatic analysis of serial and parallel robot manipulators using Grassmann-Cayley algebra. Advances in Robot Kinematics. Springer, New York (2000)

    Google Scholar 

  37. Tanev, T.K.: Singularity analysis of a 4-DOF parallel manipulator using geometric algebra. Advances in Robot Kinematics. Springer, New York (2006)

    Google Scholar 

  38. Tanev, T.K.: Geometric algebra approach to singularity of parallel manipulators with limited mobility. Advances in Robot Kinematics: Analysis and Design, pp. 39–48. Springer, The Netherlands (2008)

    Chapter  Google Scholar 

  39. Voinea, R., Atanasiu, M.: Contribution à l’étude de la structure des chaînes cinématiques. Bulrtinul Institutului Pol., Bucharesti (1960)

    Google Scholar 

  40. Waldron, K.J.: The constraint analysis of mechanisms. J. Mech. 1, 101–114 (1966)

    Article  Google Scholar 

  41. Waldron, K.J.: Overconstrained linkages. Environ. Plan. B 6, 393–402 (1979)

    Article  Google Scholar 

  42. Yu, Y., Luo, Y., Li, L.: Deployable membrane structure based on the Bennett linkage. Proc. Inst. Mech. Eng. Part G 221, 775–783 (2007)

    Article  Google Scholar 

  43. Zhang, K., Dai, J.S.: Screw-system-variation enabled reconfiguration of the Bennett plano-spherical hybrid linkage and its evolved parallel mechanism. J. Mech. Des. 137, 062303 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China under Grant No. 51525504 and the Natural Science Foundation of Zhejiang Province under Grant No. LY17E050028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinchuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, X., Li, Q. Analytical Mobility Analysis of Bennett Linkage Using Geometric Algebra. Adv. Appl. Clifford Algebras 27, 2083–2095 (2017). https://doi.org/10.1007/s00006-017-0778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-017-0778-y

Keywords

Navigation