Skip to main content
Log in

Zeons, Orthozeons, and Graph Colorings

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Nilpotent adjacency matrix methods have proven useful for counting self-avoiding walks (paths, trails, cycles, and circuits) in finite graphs. In the current work, these methods are extended for the first time to problems related to graph colorings. Nilpotent-algebraic formulations of graph coloring problems include necessary and sufficient conditions for k-colorability, enumeration (counting) of heterogeneous and homogeneous paths, trails, cycles, and circuits in colored graphs, and a matrix-based greedy coloring algorithm. Introduced here also are the orthozeons and their application to counting monochromatic self-avoiding walks in colored graphs. The algebraic formalism easily lends itself to symbolic computations, and Mathematica-computed examples are presented throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, M., Frieze, A., Reed, B.: Multicolored Hamilton cycles. Electron. J. Combin.2, #R10 (1995)

  2. Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The complexity of satisfiability problems: refining Schaefer’s Theorem. In: Mathematical Foundations of Computer Science 2005: 30th International Symposium, MFCS 2005, Gdansk, Poland, August 29–September 2, 2005. Proceedings, Jȩdrzejowicz, J., Szepietowski, A. (Eds.), Springer, Berlin, 2005, pp. 71–82. doi:10.1007/11549345_8

  3. Babu, J., Chandran, S., Rajendraprasad, D.: Heterochromatic paths in edge colored graphs without small cycles and heterochromatic-triangle-free graphs. Eur. J. Combin. 48, 110–126 (2015). doi:10.1016/j.ejc.2015.02.014

  4. Ben Slimane, J., Schott, R., Song, Y.-Q., Staples, G.S., Tsiontsiou, E.: Operator calculus algorithms for multi-constrained paths. Int. J. Math. Comput. Sci. 10, 69–104 (2015). http://ijmcs.future-in-tech.net/10.1/R-Jamila. Accessed 19 Nov 2016

  5. Broersma, H.J., Li, X.L., Woeginger, G., Zhang, S.G.: Paths and cycles in colored graphs. Aust. J. Combin. 31, 297–309 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Budinich, M., Budinich, P.: A spinorial formulation of the maximum clique problem of a graph. J. Math. Phys. 47, 043502 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Li, X.: Long heterochromatic paths in edge-colored graphs. Electron. J. Combin. 12, #R33 (2005)

  8. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, pp. 151–158. doi:10.1145/800157.805047

  9. Cruz-Sánchez, H., Staples, G.S., Schott, R., Song, Y.-Q.: Operator calculus approach to minimal paths: Precomputed routing in a store-and-forward satellite constellation. In: Proceedings of IEEE Globecom 2012, Anaheim, CA, USA, December 3–7, 3455–3460. ISBN: 978-1-4673-0919-6

  10. Erdös, P., Tuza, Z.S.: Rainbow Hamiltonian paths and canonically colored subgraphs in infinite complete graphs. Math. Pannon. 1, 5–13 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Erdös, P., Tuza, Z.S.: Rainbow subgraphs in edge-colorings of complete graphs. Ann. Discr. Math. 55, 81–88 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frieze, A.M., Reed, B.A.: Polychromatic Hamilton cycles. Discr. Math. 118, 69–74 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gyáfás, A.: Vertex coverings by monochromatic paths and cycles. J. Graph Theory 7, 131–135 (1983)

    Article  MathSciNet  Google Scholar 

  14. Harris, G., Staples, G.S.: Spinorial formulations of graph problems. Adv. Appl. Clifford Algebra. 22, 59–77 (2012). doi:10.1007/s00006-011-0298-0

  15. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations: Proceedings of a Symposium on the Complexity of Computer Computations, Miller, R.E., Thatcher, J.W. (Eds.), The IBM Research Symposia Series, New York, NY: Plenum Press, pp. 85–103 (1972)

  16. Li, X., Zhang, S., Broersma, H.: Paths and cycles in colored graphs. Electron. Note Discr. Math. 8, 128–132 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nefzi, B., Schott, R., Song, Y.-Q., Staples, G.S., Tsiontsiou, E.: An operator calculus approach for multi-constrained routing in wireless sensor networks, ACM MobiHoc: Hangzhou. China, To appear (2015)

  18. Neto, A.F.: Higher order derivatives of trigonometric functions, Stirling numbers of the second kind, and zeon algebra. J. Integer Seq. 17, Article 14.9.3 (2014)

  19. Neto, A.F.: Carlitz’s identity for the Bernoulli numbers and zeon algebra. J. Integer Seq. 18, Article 15.5.6 (2015)

  20. Neto, A.F.: A note on a theorem of Guo, Mezö, and Qi. J. Int. Seq. 19, Article 16.4.8 (2016)

  21. Neto, A.F., dos Anjos, P.H.R.: Zeon algebra and combinatorial identities. SIAM Rev. 56, 353–370 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Raynaud, H.: Sur le circuit hamiltonien hi-colore dans les graphes orientes. Periodica Math. Hung. 3, 289–297 (1973)

    Article  MATH  Google Scholar 

  23. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC ’78 Proceedings of the 10th Annual ACM Symposium on Theory of Computing, ACM New York, NY, pp. 216–226 (1978). doi:10.1145/800133.804350

  24. Schott, R., Staples, G.S.: Partitions and Clifford algebras. Eur. J. Comb. 29, 1133–1138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schott, R., Staples, G.S.: Zeons, lattices of partitions, and free probability. Comm. Stoch. Anal. 4, 311–334 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Schott, R., Staples, G.S.: Operator Calculus on Graphs (Theory and Applications in Computer Science). Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  27. Staples, G.S.: A new adjacency matrix for finite graphs. Adv. Appl. Clifford Algebras 18, 979–991 (2008). doi:10.1007/s00006-008-0116-5

    Article  MathSciNet  MATH  Google Scholar 

  28. West, D.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Stacey Staples.

Additional information

Communicated by Eckhard Hitzer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staples, G.S., Stellhorn, T. Zeons, Orthozeons, and Graph Colorings. Adv. Appl. Clifford Algebras 27, 1825–1845 (2017). https://doi.org/10.1007/s00006-016-0742-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-016-0742-2

Keywords

Navigation