Skip to main content
Log in

Hamiltonian Constraint Formulation of Classical Field Theories

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Classical field theory is considered as a theory of unparametrized surfaces embedded in a configuration space, which accommodates, in a symmetric way, spacetime positions and field values. Dynamics is defined via the (Hamiltonian) constraint between multivector-valued generalized momenta, and points in the configuration space. Starting from a variational principle, we derive the local equations of motion, that is, differential equations that determine classical surfaces and momenta. A local Hamilton–Jacobi equation applicable in the field theory then follows readily. In addition, we discuss the relation between symmetries and conservation laws, and derive a Hamiltonian version of the Noether theorem, where the Noether currents are identified as the classical momentum contracted with the symmetry-generating vector fields. The general formalism is illustrated by two examples: the scalar field theory, and the string theory. Throughout the article, we employ the mathematical formalism of geometric algebra and calculus, which allows us to perform completely coordinate-free manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Donder T.: Théorie invariantive du calcul des variations. Nouv. éd, Gauthiers-Villars (1935)

    MATH  Google Scholar 

  2. Doran C., Lasenby A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  3. Frankel T.: The Geometry of Physics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  4. Greiner W.: Classical Mechanics: Systems of Particles and Hamiltonian Dynamics, 2nd edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  5. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. D. Reidel Publishing Company, Dordrecht (1987)

  6. Kastrup H.: Canonical theories of Lagrangian dynamical systems in physics. Phys. Rep. 101, 1–167 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  7. Kanatchikov, I.V.: Rep. Math. Phys. 43, 157–170 (1999). arXiv:hep-th/9810165

  8. Kanatchikov, I.V.: Rep. Math. Phys. 41, 49 (1998).arXiv:hep-th/9709229

  9. Kanatchikov, I.V.: (2013). arXiv:1312.4518

  10. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W. H. Freeman, New York (1973)

    Google Scholar 

  11. Nambu, Y.: Hamilton-Jacobi formalism for strings. Phys. Lett. 92B, 327 (1980)

  12. Noether, E.: Invariante Variationsprobleme, Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse, pp. 235–257 (1918) (see Transport Theory and Stat. Phys. 1 186–207 (1971) for an English translation)

  13. Olver P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  14. Osserman R.: A Survey of Minimal Surfaces. Dover Publications, New York (1986)

    MATH  Google Scholar 

  15. Rovelli C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  16. Rund H.: The Hamilton–Jacobi Theory in the Calculus of Variations. D. van Nostrand, Toronto (1966)

    MATH  Google Scholar 

  17. Struckmeier, J., Redelbach, A.: Int. J. Mod. Phys. E 17, 435–491 (2008). arXiv:0811.0508

  18. Struckmeier, J.: General relativity as an extended canonical gauge theory. Phys. Rev. D 91, 085030 (2015). arXiv:1411.1558

  19. Sobczyk, G.E.: In: Micali, A., Boudet, R., Helmstetter, J.: Clifford Algebras and their Applications in Mathematical Physics: Proceedings of Second Workshop held at Montpellier, France, 1989, pp. 279–292 (1992). http://geocalc.clas.asu.edu/pdf-preAdobe8/SIMP_CAL.pdf.

  20. Weyl, H.: Ann. Math. (2) 36, 607–629 (1935)

  21. Zatloukal, V.: Classical field theories from Hamiltonian constraint: canonical equations of motion and local Hamilton–Jacobi theory (2015). arXiv:1504.08344

  22. Zatloukal, V.: Classical field theories from Hamiltonian constraint: symmetries and conservation laws (2016). arXiv:1604.03974

  23. Zwiebach B.: A First Course in String Theory. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Zatloukal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zatloukal, V. Hamiltonian Constraint Formulation of Classical Field Theories. Adv. Appl. Clifford Algebras 27, 829–851 (2017). https://doi.org/10.1007/s00006-016-0663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-016-0663-0

Keywords

Navigation