Skip to main content
Log in

Geometric Algebras for Euclidean Geometry

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The discussion of how to apply geometric algebra to euclidean \({n}\)-space has been clouded by a number of conceptual misunderstandings which we first identify and resolve, based on a thorough review of crucial but largely forgotten themes from nineteenth century mathematics. We then introduce the dual projectivized Clifford algebra \({\mathbf{P}(\mathbb{R}_{n,0,1}^{*})}\) (euclidean PGA) as the most promising homogeneous (1-up) candidate for euclidean geometry. We compare euclidean PGA and the popular 2-up model CGA (conformal geometric algebra), restricting attention to flat geometric primitives, and show that on this domain they exhibit the same formal feature set. We thereby establish that euclidean PGA is the smallest structure-preserving euclidean GA. We compare the two algebras in more detail, with respect to a number of practical criteria, including implementation of kinematics and rigid body mechanics. We then extend the comparison to include euclidean sphere primitives. We conclude that euclidean PGA provides a natural transition, both scientifically and pedagogically, between vector space models and the more complex and powerful CGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball R.: A Treatise on the Theory of Screws. Cambridge University Press, Cambridge (1900)

    MATH  Google Scholar 

  2. Blaschke W.: Nicht-euklidische Geometrie und Mechanik. Teubner, Leipzig (1942)

    MATH  Google Scholar 

  3. Clifford W.: A preliminary sketch of biquaternions. Proc. London Math. Soc. 4, 381–395 (1873)

    MathSciNet  MATH  Google Scholar 

  4. Doran C., Lasenby A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  5. Dorst L.: Tutorial appendix: structure preserving representation of euclidean motions through conformal geometric algebra. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice., pp. 435–453. Springer, London (2011)

    Chapter  Google Scholar 

  6. Dorst, L.: Total least squares fitting of k-spheres in n–d euclidean space using an (n+2)-d isometric representation. J. Math. Imaging Vis. 1–21 (2014)

  7. Dorst L., Fontijne D., Mann S.: Geometric Algebra for Computer Science. Morgan Kaufmann, San Francisco (2007)

    Google Scholar 

  8. Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice. Springer, London (2011)

  9. EduardoJose Bayro-Corrochano D., Khler D.: Motor algebra approach for computing the kinematics of robot manipulators. J. Robot. Syst. 17, 495–516 (2000)

    Article  MATH  Google Scholar 

  10. Greub W.H.: Linear Algebra. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  11. Greub W.H.: Multilinear Algebra. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  12. Gunn, C.: Geometry, kinematics, and rigid body mechanics in Cayley–Klein geometries. PhD thesis, Technical University, Berlin (2011). http://opus.kobv.de/tuberlin/volltexte/2011/3322

  13. Gunn C.: On the homogeneous model of euclidean geometry. In: Dorst, L., Lasenby, J. (eds.) A Guide to Geometric Algebra in Practice, Chap. 15., pp. 297–327. Springer, Berlin (2011)

    Chapter  Google Scholar 

  14. Gunn, C.: On the homogeneous model of euclidean geometry: extended version (2011). http://arxiv.org/abs/1101.4542

  15. Hestenes D.: New tools for computational geometry and rejuvenation of screw theory. In: Bayro-Corrochano, E.J., Scheuermann, G. (eds.) Geometric Algebra Computing in Engineering and Computer Science., pp. 3–35. Springer, Berlin (2010)

    Chapter  Google Scholar 

  16. Hestenes D., Li H., Rockwood A.: A unified algebraic approach for classical geometries. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra., pp. 3–27. Springer, Berlin (2001)

    Chapter  Google Scholar 

  17. Hestenes D., Ziegler R.: Projective geometry with clifford algebra. Acta Applicandae Mathematicae 23, 25–63 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kepler, J.: Harmonices Mundi Libri V. Linz (1619)

  19. Klein, F.: Vorlesungen Über Nicht-euklidische Geometrie. Chelsea (1926) (Original 1926, Berlin)

  20. Kowol G.: Projektive Geometrie und Cayley–Klein Geometrien der Ebene. Birkhauser, Basel (2009)

    Book  Google Scholar 

  21. Lasenby A., Lasenby R., Doran C.: Rigid body dynamics and conformal geometric algebra. In: Dorst, L., Lasenby, J. (eds) Guide to Geometric Algebra in Practice, chap. 1., pp. 3–25. Springer, Berlin (2011)

    Chapter  Google Scholar 

  22. Li H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  23. von Mises R.: Die Motorrechnung: Eine Neue Hilfsmittel in der Mechanik. Zeitschrift für Rein und Angewandte Mathematik und Mechanik 4(2), 155–181 (1924)

    Article  ADS  MATH  Google Scholar 

  24. Perwass C.: Geometric Algebra with Applications to Engineering. Springer, Berlin (2009)

    MATH  Google Scholar 

  25. Selig J.: Clifford algebra of points, lines, and planes. Robotica 18, 545–556 (2000)

    Article  Google Scholar 

  26. Selig J.: Geometric Fundamentals of Robotics. Springer, Berlin (2005)

    MATH  Google Scholar 

  27. Study E.: Geometrie der Dynamen. Tuebner, Leibzig (1903)

    MATH  Google Scholar 

  28. Ziegler R.: Die Geschichte Der Geometrischen Mechanik im 19. Jahrhundert. Franz Steiner Verlag, Stuttgart (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Gunn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunn, C. Geometric Algebras for Euclidean Geometry. Adv. Appl. Clifford Algebras 27, 185–208 (2017). https://doi.org/10.1007/s00006-016-0647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-016-0647-0

Keywords

Navigation