Skip to main content
Log in

High-resolution DTM-based stratigraphic correlation of fluvial terraces along River Würm

Stratigraphische Zuordnung von Flussterrassen entlang der Würm unter Verwendung eines hochaufgelösten Digitalen Geländemodells

  • GIS in Geomorphology
  • Published:
KN - Journal of Cartography and Geographic Information Aims and scope Submit manuscript

Abstract

Digital terrain models (DTM) with high resolution are ideally suited for a systematic mapping of geomorphological structures, such as fluvial terraces, with high accuracy. We developed a semi-automatic GIS method to correlate individual terrace treads stratigraphically using a 1 m DTM. It is applied to a gorge of River Wurm (Southern Bavaria, Germany). The approach yields suitable and plausible results and the presented map provides a clear and easy overview of correlated terrace levels. The investigation enhances the understanding of the spatial and temporal evolution of the va ll ey and demonstrates the great benefit of high-resolution DTMs and the digital processing of geodata for the geomorphological research.

Zusammenfassung

Hochaufgelöste Digitate Geländemodelle (DGM) sind bestens geeignet. um geomorphologische Strukturen wie Flussterrassen systematisch und mit hoher Genauigkeit zu kartieren. Wir haben einen semi-automatischen G/5-Ansatz entwickelt, der unter Verwendung eines 1-m-DGM die Ableitung von stratigraphisch zusammengehörenden Terrassenflächen ermöglicht. Die Methode wurde auf einen Abschnitt der Würm (Südbayern) angewendet und liefert geeignete und plausible Ergebnisse. Die resultierende Korte gibt einen strukturierten Überblick zur stratigraphischen Zuordnung der Terrassen. Die Untersuchung verbessert das Versttindnis zur räumlichen und zeitlichen Genese des Tats und zeigt das große Potenzial von hochaufgelösten DGM in der digitalen Geodatenverarbeitung und für die geomorphologische Forschung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Beckenbach, E.; Müller, T.; Seyfried, H., Simon, T. (2014): Potential of a high-resolution DTM with large spatial coverage for visualization, identification and interpretation of young (Wiirmian) glacial geomorphology: a case study from Oberschwaben (southern Germany). Quaternary Science Journal, 63: 107–129. doi: https://doi.org/10.3285/eg.63.2.01

    Google Scholar 

  • Briese, C.; Mandlburger, G.; Ressl, C., Brockmann, H. (2009): Automatic break line determination for the generation of a DTM along the river Main. Paper presented at the Laser scanning 2009, IAPRS, Paris

    Google Scholar 

  • Clubb, F. J.; Mudd, S.M.; Milodowski, D. T.; Valters, D. A.; Slater, L. J.; Hurst, M.D., Limaye, A. B. (2017): Geomorphometric del ineation of floodplains and terraces from objectively defined topographic thresholds. Earth Surface Dynamics, 5 (3): 369–385. doi: https://doi.org/10.5194/esurf-5-369-2017

    Article  Google Scholar 

  • Demoulin, A.; Bovy, B.; Rixhon, G.; Comet, Y. (2007): An automated method to extract fluvial terraces from digital elevation models: The Vesdre valley, a case study in eastern Belgium. Geomorphology, 91 (1): 51–64

    Article  Google Scholar 

  • Doppler, G.; Kroemer, E.; Rögner, K.; Wallner, J.; Jerz, H.; Grottenthaler, W. (2011): Quaternary stratigraphy of southern Bavaria. Quaternary Science Journal, 60 (2–3): 329–365

    Google Scholar 

  • Dühnforth, M.; Densmore, A. L.; Ivy-Ochs, S.; Allen, P.; Kubik, P. W. (2017): Early to Late Pleistocene history of debris-flow fan evolution in western Death Valley (Californ ia) using cosmogenic 10 Be and 26 A1. Geomorphology, 281: 53–65. doi: https://doi.org/10.1016/j.geomorph.2016.12.020

    Article  Google Scholar 

  • Fryirs, K. A.; Brierley, G. J. (2012): Geomorphic Analysis of River Systems: An Approach to Reading the Landscape. In: Geomorphic Analysis of River Systems. John Wiley & Sons, Ltd, pp 1–8. doi: https://doi.org/10.1002/9781118305454.ch1

    Chapter  Google Scholar 

  • Hopkins, A. J.; Snyder, N. P. (2016): Performance evaluation of three DEM-based fluvial terrace mapping methods. Earth Surface Processes and Landforms, 41 (8): 1144–1152. doi: https://doi.org/10.1002/esp.3922

    Article  Google Scholar 

  • Jerz, H. (1987): Geologische Karte von Bayern 1:25000, Erlauterungen zum Blatt Nr. 7934 Starnberg Nord. München

    Google Scholar 

  • Jones, A. F.; Brewer, P. A.; Johnstone, E.; Macklin, M.G. (2007): High-resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data. Earth Surface Processes and Landforms, 32 (10): 1574–1592. doi: https://doi.org/10.1002/esp.1505

    Article  Google Scholar 

  • Kleinmann, A. (1995): Seespiegelschwankungen am Ammersee. Ein Beitrag zur spät-und postglazialen Klimageschichte Bayems. Geologica Bavarica, 99: 253–367

    Google Scholar 

  • Kolb, T.; Fuchs, M.; Zoller, L. (2016): Deciphering fluvial landscape evolution by luminescence dating of river terrace formation: a case study from Northern Bavaria, Germany. Zeitschrift für Geomorphologic, Supplementary Issues, 60 (1): 29–48. doi: https://doi.org/10.1127/zfg_suppl/2015/S-00193

    Article  Google Scholar 

  • Limaye, A.; Lamb, M. P. (2016): Numerical model predictions of autogenic fluvial terraces and comparison to climate change expectations. Journal of Geophysical Research: Earth Surface

    Google Scholar 

  • Nicoulin, A. (2014): Fluvial Terraces and Post-G lacial River Incision Along the Farmington and Housatonic Rivers in Southern New England. Masters, University of Connecticut

    Google Scholar 

  • Passalacqua, P.; Belmont, P.; Foufoula-Georgiou, E. (2012): Automatic geomorphic feature extraction from lidar in flat and engineered landscapes. Water Resources Research, 48 (3): n/a-n/a. doi: https://doi.org/10.1029/2011WR010958

    Google Scholar 

  • Pavlopoulos, K.; Evelpidou, N.; Vassilopoulos, A. (2009): Methodology-Techniques. In: Mapping Geomorphological Environments. Springer Berlin Heildelberg, pp 5–47. doi: https://doi.org/10.1007/978-3-642-01950-0_1

    Chapter  Google Scholar 

  • Penck, A.; Bruckner, E. (1901/09): Die Alpen im Eiszeitalter, vol 3. Tauchnitz Leipzig

    Google Scholar 

  • Pierce, J. L.; Meyer, G. A.; Rittenour, T. (2011): The relation of Holocene fluvial terraces to changes in climate and sediment supply, South Fork Payette River, Idaho. Quaternary Science Reviews, 30 (5): 628–645

    Article  Google Scholar 

  • Preusser, F.; Reitner, J. M.; Schlüchter, C. (2010): Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland. Swiss Journal of Geosciences, 103 (3): 407–426

    Article  Google Scholar 

  • Reuther, A. U.; Fiebig, M.; Ivy-Ochs, S.; Kubik, P. W.; Reitner, J. M.; Jerz, H., Heine, K. (2011): Deglaciation of a large piedmont lobe glacier in comparison with a small mountain glacier- new insight from surface exposure dating. Two studies from SE Germany. Quaternary Science Journal, 60 (2–3): 248–269. doi: https://doi.org/10.3285/eg.60.2-3.03

    Google Scholar 

  • Rippl, C. (2011): Thermische Entwicklung des Ammersees als regionale Auswirkung des Globalen Wandels. Ludwig-Maximilians-University, Munich

    Google Scholar 

  • Rutzinger, M.; Holle, B.; Kringer, K. (2012): Accuracy of automatically extracted geomorphological breaklines from airborne LiDAR curvature images. Geografiska Annaler: Series A, Physical Geography, 94 (1): 33–42. doi: https://doi.org/10.1111/j.1468-0459.2012.00453.x

    Article  Google Scholar 

  • Schulz, G. (1989): Lexikon zur Bestimmung der Gelandeformen in Karten, vol 28. Univerlag TU Berlin

  • Stahl, T.; Winkler, S.; Quigley, M.; Bebbington, M.; DuffY, B., Duke, D. (2013): Schmidt hammer exposure- age dating (SHD) of late quaternary fluvial terraces in New Zealand. Earth Surface Processes and Landforms, 38 (15): 1838–1850

    Article  Google Scholar 

  • Stout, J. C.; Belmont, P. (2014): TerEx Toolbox for semi-automated selection of fluvial terrace and floodplain features from lidar. Earth Surface Processes and Landforms, 39 (5): 569–580. doi: https://doi.org/10.1002/esp.3464

    Article  Google Scholar 

  • von Asselen, S.; Seijmonsbergen, A. C. (2006): Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology, 78: 309–320

    Article  Google Scholar 

  • Walter, R.; Merritts, D.; Rahnis, M. (2007): Estimating the Volume, Nutrient Content, and Rates of Stream Bank Erosion of Legacy Sediment in the Piedmont and Valley and Ridge Physiograph ic Provinces, Southeastern and Central PA. Report. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bueche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueche, T., Loesch, K. High-resolution DTM-based stratigraphic correlation of fluvial terraces along River Würm. j. Cartogr. Geogr. inf. 67, 320–325 (2017). https://doi.org/10.1007/BF03544503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03544503

Keywords

Schlüsselwörter

Navigation