Skip to main content
Log in

Unsteady 1-D Thrust Modeling with EOS Effects for Ram Accelerator Experiments at Different Bores

  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

Advances made to the unsteady, one-dimensional (1-D) modeling of the thermally choked ram accelerator thrust-Mach number characteristics include the use of real-gas equations of state to account for the compressibility effects of the combustion products. Equations of state based on generalized empirical and theoretical considerations are incorporated into a 1-D computer code to predict the combustion end state equilibrium conditions when the propellant starts out a relatively high fill pressure (>2.5 MPa) and the projectile acceleration exceeds 100 km/s2. The objective of this work is to improve the unsteady 1-D model as a useful tool to predict the thrust of the thermally choked ram accelerator propulsive mode by utilizing key results from the more computationally intensive 2-D or 3-D simulations. New thrust-Mach number calculations compared with experimental data from 25-mm, 30-mm, 38-mm, 90-mm, and 120-mm-bore experiments are generally in good agreement until the point where enhanced accelerations are observed, presumably due to projectile material combustion. The results of this investigation indicate the need for more research on ram accelerator flow fields and the role projectile material may play in the combustion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

cross sectional of the tube

ap:

acceleration of the projectile

Bi:

co-volume of species i

cp:

specific heat capacity at constant pressure

CJ:

Chapman-Jouguet state

CV:

control volume

DCJ:

CJ detonation speed

e:

specific internal energy

F:

thrust

h:

specific enthalpy

Lp:

length of projectile

LCV:

length of control volume

M:

Mach number

mp:

mass of projectile

p:

static pressure

Δq:

heat of reaction

Q:

non-dimensional heat release, Δq/cp1T1

R:

gas constant

T:

temperature

V:

projectile velocity

v:

specific volume

Xi:

molar fraction

1, 2:

inlet, outlet reference of control volume

α:

acceleration parameter, (Lcvap)

β:

adjustable parameter in BKW EoS

Γ:

adiabatic heat capacity rate,(dh/de)s

γ:

specific heat ratio

ζ:

adjustable parameter in BKW EoS

η:

non-dimensional enthalpy, h/cp1T1

θ:

adjustable parameter in BKW EoS

σ:

compressibility factor

χ:

adjustable parameter in BKW EoS

References

  1. Hertzberg, A., Bruckner, A.P., and Bogdanoff, D.W., ”Ram Accelerator: A New Chemical Method for Accelerating Projectiles to Ultrahigh Velocities,” AIAA J., Vol. 26, No. 2, 1988, pp. 195–203.

    Article  Google Scholar 

  2. Bruckner, A.P., Knowlen, C., Hertzberg, A., and Bogdanoff, D.W., ”Operational Characteristics of the Thermally Choked Ram Accelerator” J. of Propulsion and Power, Vol. 7, No. 5, 1991, pp. 828–836.

    Article  Google Scholar 

  3. Hertzberg, A., Bruckner, A.P., and Knowlen, C., ”Experimental Investigation of Ram Accelerator Propulsion Modes,” Shock Waves, Vol. 1, No. 1, 1991, pp. 17–25.

    Article  Google Scholar 

  4. Bundy, C, Knowlen, C., and Bruckner, A.P., ”Unsteady Effects on Ram Accelerator Operation at Elevated Fill Pressures,” J. of Propulsion and Power, Vol. 20, 2004, pp. 801–810.

    Article  Google Scholar 

  5. Giraud, M.J., Legendre, J.F., and Henner, M., ”RAMAC in Subdetonative Propulsion Mode: State of the ISL Studies,” Ram Accelerators, Takayama K., Sasoh A. (eds.), Springer-Verlag, Heidelberg, 1998, pp. 65–78.

    Chapter  Google Scholar 

  6. Kruczynski, D.L. and Liberatore, F., ”Experimental Investigation of High Pressure/Performance Ram Accelerator Operation,” 1996, AIAA 96-2676.

    Book  Google Scholar 

  7. Hamate, Y., Sasoh, A., and Takayama, K. ”High Acceleration Using Open-Base Projectile,” J. of Propulsion and Power, Vol. 19, No. 2, 2003, pp. 801–810.

    Article  Google Scholar 

  8. Bengherbia, T., Yao, Y.F., and Bauer, P., ”Computational Investigation of Transitional Viscous Flow over a Ram Accelerator Projectile in Sub-Detonative Propulsion Mode,” 2006, AIAA 2006-0558.

    Book  Google Scholar 

  9. Bengherbia, T., Yao, Y.F., Bauer, P., and Knowlen, C., ”Numerical Investigation of Thermally Choked Ram Accelerator in Sub-Detonative Regime,” 2009, AIAA 2009-0635.

    Book  Google Scholar 

  10. Bengherbia, T., Yao Y.F., Bauer P., and Knowlen, C., ”CFD-based ID Modeling of the Thermally Choked Ram Accelerator,” The 50th AIAA Aerospace Sciences Meeting and Exhibit, Nashville, TN, 2012, AIAA 2012-982.

    Google Scholar 

  11. Choi, J.-Y., Lee, B.-J. and Jeung, I.-S. ”Computational modeling of high pressure combustion mechanism in scram accelerator,” J. Phys. I V France 10, 2000, Pr11-131.

    Google Scholar 

  12. C. Li and K. Kailasanath, ”Initiation Mechanism of the Thermally Choked Combustion in Ram Accelerators,” J. of Propulsion and Power, Vol. 15, No. 1, 1999, pp. 151–153.

    Article  Google Scholar 

  13. Nusca M.J. and Kruczynski, D.L, ”Reacting Flow Simulation for Large-Scale RAMAC,” J. of Propulsion and Power, Vol. 12, No. 1, 1996, pp. 61–69.

    Article  Google Scholar 

  14. Bengherbia, T., Yao Y.F., Bauer P., and Knowlen, C, ”One-dimensional Performance Modeling of the RAMAC in Subdetonative Regime,” Aerotecnica, J. of Aerospace Sci., Tech. and Syst., Vol. 89, 2010, pp. 3–13.

    Google Scholar 

  15. Bengherbia, T., Yao Y.F., Bauer P., Giraud, M., and Knowlen, C., ”Improved 1-D Unsteady Modeling of the Thermally Choked RAMAC in the Sub-Detonative Propulsion Mode,” J. of Appl. Mech., Vol. 78, 2011, pp. 150–167.

    Article  Google Scholar 

  16. Bauer, P., Bengherbia, T., Knowlen, C., Bruckner, A,P., Yao, Y., and Giraud, M. ”Equations of State Implementation for 1-D Modelling of Performance in Ram Accelerator Thermally Choked Propulsion Mode,” Int. J. Engineering systems Modelling and Simulations, Vol. 7, No. 2, 2015, pp. 71–79.

    Article  Google Scholar 

  17. Bauer, P., Knowlen, C., and Bruckner, A.P., ”Real gas effects on the prediction of ram accelerator performance,” Shock Waves, Vol. 8, 1998, pp. 113–118.

    Article  Google Scholar 

  18. Bauer, P. and Knowlen, C., ”Compressibility effects of unreacted propellant on thermally choked ram accelerator performance,” Eur. Phys. J. Appl. Phys., Vol. 21, 2003, pp. 233–238.

    Article  Google Scholar 

  19. Bauer, P., Knowlen, C., and Bruckner, A.P., ”Modeling Acceleration effects on Ram Accelerator Thrust at High Pressures,” J. of Propulsion and Power, Vol. 21, 2005, pp. 955–957.

    Article  Google Scholar 

  20. K.W. Naumann and A.P. Bruckner, ”Ram Accelerator Ballistic Range Concept for Softly Accelerating Hypersonic Free-Flying Models,” J. of Aircraft, Vol. 31, No. 6, 1994, pp. 1310–1316.

    Article  Google Scholar 

  21. C. Knowlen and A.P. Bruckner, ”Direct Space Launch Using Ram Accelerator Technology,” Space Technology and Applications International Forum-2001, ed M.S. El-Genk, American Institute of Physics, 2001, pp. 583–588.

    Google Scholar 

  22. Heuze, O., ”Equations of State of Detonation Product,” Phys. Rev. A, Vol. 34, 1986, pp. 428–432.

    Article  Google Scholar 

  23. D.L. Buckwalter, C. Knowlen and A.P. Bruckner, ”Real Gas Effects on Ram Accelerator Analysis,” 1997, AIAA 97-2894.

    Book  Google Scholar 

  24. Bauer, P., Brochet, C, and Krishnan S., ”Detonation Characteristics of Gaseous Ethylene, Oxygen and Nitrogen Mixtures at High Initial Pressures,” Progress in Aeronautics and Astronautics, Ed. AIAA, New York, NY, Vol. 75, 1981, pp. 408–422.

    Google Scholar 

  25. Bauer, P., Presles, H.N., Heuzé, O., and Brochet, C., ”Equation of State for Dense Gases,” Archivum Combustionis, 5, 1, 1985, pp. 315–320.

    Google Scholar 

  26. Mader, C.L., ”Detonation Properties of Condensed Explosives Computed Using the Becker — Kistiakowsky — Wilson Equation of State,” Report LA 2900, 1963, Los Alamos Scientific Laboratory, NM, USA.

    Google Scholar 

  27. Bauer, P., Dunand, M., and Presles, H.N., ”Detonation Characteristics of Gaseous Methane-Oxygen-Nitrogen Mixtures at Extremely Elevated Initial Pressure,” AIAA Progress in Aeronautics and Astronautics, Vol. 133, 1991, pp. 56–62.

    Google Scholar 

  28. Bauer, P., Legendre, J.F., Knowlen, C., and Higgins, A.J., ”Transition of Detonation on Insensitive Dense Gaseous Mixtures in Tubes,” 1996, AIAA 96-2682.

    Google Scholar 

  29. Bengherbia, T., Yao Y.F., Bauer P., and Knowlen, C., ”Thrust Prediction in Thermally Choked Ram Accelerator,” 2010, AIAA 2010-1129.

    Book  Google Scholar 

  30. J.-F. Legendre and M. Giraud, ”Enhanced RAMAC performance in the Subdetonative Propulsion Mode with Semi-Combustible Projectile,” J. Phys. IV France, Vol. 10, 2000, Pr11-23-Pr11-30.

    Google Scholar 

  31. A.J. Higgins, C. Knowlen and A.P. Bruckner, ”Ram Accelerator Operating Limits, Part 2: Nature of Observed Limits,” J. of Propulsion and Power, Vol. 14, No. 6, 1998, pp. 959–966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knowlen, C., Bauer, P., Bengherbia, T. et al. Unsteady 1-D Thrust Modeling with EOS Effects for Ram Accelerator Experiments at Different Bores. Aerotec. Missili Spaz. 97, 19–26 (2018). https://doi.org/10.1007/BF03404761

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03404761

Navigation