Skip to main content
Log in

Multi-body Model Validation of a Landing Gear System for a General Aviation Aircraft

  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

The present work is aimed to numerically validate the experimental drop test results, related to the landing gear of a general aviation aircraft, in order to define an appropriate simulation methodology able to save time, costs and risks due to structural design and experimental test campaign required in the certification phase. The aircraft selected for this research activity is the AP-68TP-300 Spartacus, an Italian nine-seat, twin-engined, high wing monoplane, realized by Vulcanair S.p.a.. The multi-body approach has been developed through the MSC Adams software, starting from a simplified 1D model up to a more detailed 3D one. The comparison between numerical and experimental results in terms of load factors has been carried out in accordance with CS-23 (Certification Specifications for Normal, Utility, Aerobatic and Commuter Aeroplanes), and it has shown a good correlation, especially for the 3D model, since it better fits the real behaviour of the entire system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pascale, L. Lecce, G. Verde, “Studio Teorico-Sperimentale sul comportamento dinamico del carrello a balestra di un velivolo biturbina dell’aviazione generale”, Istituto di Progetto di velivoli, Università degli Studi di Napoli, Federico II, 1981.

    Google Scholar 

  2. 14 Code of Federal Regulation §23.725 Amdt. 6.

  3. 14 Code of Federal Regulation §23.727 Amdt. 6.

  4. M. Raymond, R. Mattehew, “Tire models for Vehicle Dynamic Simulation and Accident Reconstruction”, AE Technical Paper 2009-01-0102, 2009

    Google Scholar 

  5. G.A. Doyle, “A Review of Computer Simulations for Aircraft-surface Dynamics” Journal of Aircraft, Vol. 23 (4), 1986.

    Google Scholar 

  6. T. Catt, D. Cowling and A. Shepherd, “Active Landing Gear Control for Improved Ride Quality during Ground Roll. Smart Structures for Aircraft and Spacecraft (AGARD CP 531)”. Stirling Dynamics Ltd., Bristol, 1993.

    Google Scholar 

  7. A.G. Barnes, T.Y. Yager, “Simulation of Aircraft Behavior On and Close To the Ground”, AGARDOgraph AG333, 1998.

    Google Scholar 

  8. H.P.Y. Hitch, “Aircraft Ground Dynamics”, Vehicle System Dynamics. 10, pp. 319–332, 1981.

    Article  Google Scholar 

  9. W.R. Krüger et al., “Aircraft Landing Gear Dynamics: Simulation and Control”, Vehicle System Dynamics, Vol. 28, pp. 257–289, 1997.

    Article  Google Scholar 

  10. J. Pritchard, “An Overview of Landing Gear Dynamics”, NASA Langley R. C.,/TM-1999-209143, ARL-TR-1976, May 1999.

    Google Scholar 

  11. B. v. Schlippe, R. Dietrich, “Das Flattern des pneumatischen Rades”, Lilienthal Gesellschaft \(f{\rm{\~A}}\frac{1}{4}r\)fσ14r Luftfahrtforschung, 1941.

    Google Scholar 

  12. H.B. Pacejka (ed.), “Tire Models for Vehicle Dynamics Analysis”, 1st International Colloquium on Tire Models for Vehicle Dynamics Analysis. Swets & Zeitlinger, 1991.

    Google Scholar 

  13. E. Bakker, L. Nyborg, H.B. Pacejka, “A New Tyre Model With an Application in Vehicle Dynamics Studies”, SAE 890087, 1989.

    Google Scholar 

  14. H.B. Pacejka and I.J.M. Besselink, “Magic Formula Tyre Model with Transient Properties”, Vehicle System Dynamics Supplement 27, pp. 234–249, 1997.

    Google Scholar 

  15. T. Rook, S. Kumar, “Dynamic Aircraft Landing Gear Simulation Using Flexible Multibody Dynamics Methods in Adams to Guide Component Design and Testing”. ADAMS User Conference, June 2010.

    Google Scholar 

  16. V. Giordano, “Il progetto del carrello a balestra degli aeroplani leggeri”, Istituto di Progetto di velivoli, Universitdegli Studi di Napoli, Federico II.

  17. V. Giordano, “Sulla sperimentazione dei carrelli d’atterraggio a balestra”, Istituto di Progetto di velivoli, Universitdegli Studi di Napoli, Federico II.

  18. The Goodyear Tire & Rubber, “Aircraft Tire Data Book-10/02”.

  19. Pacajka Hans, “Tire and vehicle Dynamics”, SAE, Warendale, PA, 2002.

    Google Scholar 

  20. Tonuk E., Unlusoy Y. S., “Prediction of automobile tire cornering force characteristics by finite element modeling and analysis”, Computers and Structures, 9, 2001, pp 1219–1232.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Italian Association of Aeronautics and Astronautics XXII Conference Napoli, 9–12 September 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, M., Barile, M., De Fenza, A. et al. Multi-body Model Validation of a Landing Gear System for a General Aviation Aircraft. Aerotec. Missili Spaz. 93, 101–108 (2014). https://doi.org/10.1007/BF03404682

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03404682

Keywords

Navigation