Skip to main content
Log in

Regulation of basal metabolic rate in uncomplicated pregnancy and in gestational diabetes mellitus

  • Review
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Basal metabolic rate (BMR) is one of the major components of total energy expenditure (TEE). It is affected by various factors, such as body weight, body composition, age, race/ethnicity, gender, biochemical parameters, physical activity, and health status. Gestational diabetes mellitus (GDM) is the most common metabolic disorder during pregnancy and it increases the risk for health complications, such as stillbirth, diabetes mellitus, and cardiovascular disease in later life. Both BMR and GDM have been linked with gestational weight gain (GWG), a fact suggesting a possible association between them. However, assessing BMR is a complex procedure, which becomes more complicated when additional parameters, such as pregnancy and GDM, are taken into consideration. The present review summarizes the current knowledge on factors affecting BMR and its regulation in relation to pregnancy and GDM. Future research addressing these associations should thoroughly consider other factors that affect BMI when designing such studies and/or discussing the BMR outcome results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spaight C, Gross J, Horsch A, Puder JJ, 2016 Gestational Diabetes Mellitus. Endocr Dev 31: 163–178.

    Article  PubMed  Google Scholar 

  2. Butte NF, Caballero B 2014 Energy needs: assessment and requirements. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR (eds) Modern nutrition in health and disease, Lippincott Williams & Wilkins; Baltimore/Philadelphia; pp, 88–101.

    Google Scholar 

  3. Catalano PM, 1999 Pregnancy and lactation in relation to range of acceptable carbohydrate and fat intake. Eur J Clin Nutr 53(Suppl 1): S124–131.

    Article  PubMed  Google Scholar 

  4. Chu SY, Callaghan WM, Kim SY, et al, 2007 Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 30: 2070–2076.

    Article  PubMed  Google Scholar 

  5. Hedderson MM, Gunderson EP, Ferrara A, 2010 Gestational weight gain and risk of gestational diabetes mellitus. Obstet Gynecol 115: 597–604.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carreno CA, Clifton RG, Hauth, JC, et al, 2012 Excessive early gestational weight gain and risk of gestational diabetes mellitus in nulliparous women. Obstet Gynecol 119: 1227–1233.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu Z, Ao D, Yang H, Wang Y, 2014 Gestational weight gain and risk of gestational diabetes mellitus among Chinese women. Chin Med J (Engl) 127: 1255–1260.

    Google Scholar 

  8. Hall KD, Heymsfield SB, Kemnitz JW, Schoeller DA, Speakman JR, 2012 Energy balance and its components: implications for body weight regulation. Am J Clin Nutr. 95: 989–994.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bronstein MN, Mak RP, King JC, 1996 Unexpected relationship between fat mass and basal metabolic rate in pregnant women. Br J Nutr 75: 659–668.

    Article  PubMed  CAS  Google Scholar 

  10. Lof M, Olaouson H, Bostrom K, Sjoberg B, Sohlstrom A, Forsum E, 2005 Changes in basal metabolic rate during pregnancy in relation to changes in body weight and composition, cardiac output, insulin like growth factor I and thyroid hormones and in relation to fetal growth. Am J Clin Nutr 81: 678–685.

    Article  PubMed  CAS  Google Scholar 

  11. Damjanovic SS, Stojic RD, Lalic NM, et al, 2009 Relationship between basal metabolic rate and Cortisol secretion throughout pregnancy. Endocrine 35: 262–268.

    Article  PubMed  CAS  Google Scholar 

  12. Mărginean C, Mărginean CO, Bănesku C, Melit L, Tripon F, Iancu M, 2016 Impact of demographic, genetic, and bioimpedance factors on gestational weight gain and birth weight in a Romanian population. Medicine (Baltimore) 95: e4098.

    Article  Google Scholar 

  13. Adane EE, Tooth LR, Mishra GD, 2017 Pre-pregnancy weight change and incidence of gestational diabetes mellitus: A finding from a prospective cohort study. Diabetes Res Clin Pract 124: 72–80.

    Article  PubMed  Google Scholar 

  14. Levine JA, 2005 Measurement of energy expenditure. Public Health Nutr 8: 1123–1132.

    Article  PubMed  Google Scholar 

  15. Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR, 2005 Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin or triiodothyronine. Am J Clin Nutr 82: 941–948.

    Article  PubMed  CAS  Google Scholar 

  16. Adriaens MP, Schoffelen PF, Westerterp KR, 2003 Intra-individual variation of basal metabolic rate and the influence of daily habitual physical activity before testing Br J Nutr 90: 419–423.

    Article  PubMed  CAS  Google Scholar 

  17. Ravussin E, Lillioja S, Knowler WC, et al, 1988 Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 318: 467–472.

    Article  PubMed  CAS  Google Scholar 

  18. Tataranni PA, Harper IT, Snitker S, et al, 2003 Body weight in free-living Pima Indians: effect of energy intake vs expenditure. Int J Obes Relat Metab Disord 27: 1578–1583.

    Article  PubMed  CAS  Google Scholar 

  19. Luke A, Durazo-Arvizu R, Cao G, Adeyemo A, Tayo B, Cooper R, 2006 Positive association between resting energy expenditure and weight gain in lean adult population. Am J Clin Nutr 83: 1076–1081.

    Article  PubMed  CAS  Google Scholar 

  20. Anthanont P, Jensen MD, 2016 Does metabolic rate predict weight gain? Am J Clin Nutr 104: 959–963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Müller MJ, Bosy-Westphal A, Later W, Haas V, Heller M, 2009 Functional body composition: insights into the regulation of energy metabolism and some clinical applications. Eur J Clin Nutr 63: 1045–1056.

    Article  PubMed  Google Scholar 

  22. Bosy-Westphal A, Kossel E, Goele K, et al, 2009 Contribution of individual organ mass loss to weight loss-associated decline in resting energy expenditure. Am J Clin Nutr 90: 993–1001.

    Article  PubMed  CAS  Google Scholar 

  23. Moradi S, Mirzaei K, Abdurahman AA, Keshavarz SA, 2017 Adipokines may mediate the relationship between resting metabolic rates and bone mineral densities in obese women. Osteoporos Int Jan 23 doi: 10.1007/s00198-017-3914-6. [Epub ahead of print].

  24. Keys A, Taylor HL, Grande F, 1973 Basal metabolism and age of adult man. Metabolism 22: 579–587.

    Article  PubMed  CAS  Google Scholar 

  25. Henry CJ, 2000 Mechanisms of changes in basal metabolism during ageing. Eur J Clin Nutr 54(Suppl 3): S77–S91.

    Article  PubMed  Google Scholar 

  26. Roberts SB, Dallai GE, 2005 Energy requirements and aging. Public Health Nutr 8: 1028–1036.

    Article  PubMed  Google Scholar 

  27. Lazzer S, Bedogni G, Lafortuna CL, et al, 2010 Relationship between basal metabolic rate, gender, age, and body composition in 8,780 white obese subjects. Obesity (Silver Spring) 18: 71–78.

    Article  Google Scholar 

  28. Krems C, Lührmann PM, Strassburg A, Hartmann B, Neuhäuser-Berthold M, 2005 Lower resting metabolic rate in the elderly may not be entirely due to changes in body composition. Eur J Clin Nutr 59: 255–262.

    Article  PubMed  CAS  Google Scholar 

  29. Pannemans DL, Westerterp KR, 1995 Energy expenditure. Physical activity and basal metabolic rate of elderly subjects. Br J Nutr 73: 571–581.

    Article  PubMed  CAS  Google Scholar 

  30. Klausen B, Toubro S, Astrup A, 1997 Age and sex effects on energy expenditure. Am J Clin Nutr 65: 895–907.

    Article  PubMed  CAS  Google Scholar 

  31. St-Onge MP, Gallagher D, 2010 Body composition changes with aging: the cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 26: 152–155.

    Article  PubMed  CAS  Google Scholar 

  32. Geisler C, Braun W, Pourhassan M, et al, 2016 Age-dependent changes in resting energy expenditure (REE): Insights from detailed body composition analysis in normal and overweight Caucasians. Nutrients 8: pii:E322.

    Article  CAS  Google Scholar 

  33. Gannon B, DiPietro L, Poehlman ET, 2000 Do African Americans have lower energy expenditure than Caucasians? Int J Obes Relat Metab Disord 24: 4–13.

    Article  PubMed  CAS  Google Scholar 

  34. Lovejoy JC, Champagne CM, Smith SR, de Jonge L, Xie H, 2001 Ethnic differences in dietary intakes, physical activity, and energy expenditure in middle-aged, premenopausal women: the Healthy Transitions Study. Am J Clin Nutr 74: 90–95.

    Article  PubMed  CAS  Google Scholar 

  35. Cole TJ, Henry CJ, 2005 The Oxford Brookes basal metabolic rate database—a reanalysis. Public Health Nutr 8: 1202–1212.

    Article  PubMed  CAS  Google Scholar 

  36. Adzika Nsatimba PA, Pathak K, Soares MJ, 2016 Ethnic differences in resting metabolic rate, respiratory quotient and body temperature: a comparison of Africans and European Australians. Eur J Nutr 55: 1831–1838.

    Article  PubMed  CAS  Google Scholar 

  37. Albu J, Shur M, Curi M, Murphy L, Heymsfield SB, Pi-Sunyer FX, 1997 Resting metabolic rate in obese, premenopausal black women. Am J Clin Nutr 66: 531–538.

    Article  PubMed  CAS  Google Scholar 

  38. Foster GD, Wadden TA, Vogt RA, 1997 Resting energy expenditure in obese African-American and Caucasian women. Obes Res 5: 1–8.

    Article  PubMed  CAS  Google Scholar 

  39. Jakicic JM, Wing RR, 1998 Differences in resting energy expenditure in African-American vs Caucasian overweight females. Int J Obes Relat Metab Disord 22: 236–242.

    Article  PubMed  CAS  Google Scholar 

  40. Carpenter WH, Fonong T, Toth MJ, et al, 1998 Total daily expenditure in free-living older African-Americans and Caucasians. Am J Physiol 274: E96–E101.

    PubMed  CAS  Google Scholar 

  41. Kaplan AS, Zemel BS, Stallings VA, 1996 Differences in resting energy expenditure in prepubertal black children and white children. J Pediatr 129: 643–647.

    Article  PubMed  CAS  Google Scholar 

  42. Yanovski SZ, Reynolds JC, Boyle AJ, Yanovski JA, 1997 Resting metabolic rate in African-American and Caucasian girls. Obes Res 5: 321–325.

    Article  PubMed  CAS  Google Scholar 

  43. Wong WW, Butte NF, Ellis KJ, et al, 1999 Pubertal African-American girls expend less energy at rest and during physical activity than Caucasian girls. J Clin Endocrinol Metab 84: 906–911.

    PubMed  CAS  Google Scholar 

  44. Treuth MS, Butte NF, Wong WW, 2000 Effects of familial predisposition to obesity on energy expenditure in multiethnic prepubertal girls. Am J Clin Nutr 71: 893–900.

    Article  PubMed  CAS  Google Scholar 

  45. Luke A, Dugas L, Kramer H, 2007 Ethnicity, energy expenditure and obesity: are the observed black/white differences meaningful? Curr Opin Endocrinol Diabetes Obes 14: 370–373.

    Article  PubMed  Google Scholar 

  46. Spaeth AM, Dinges DF, Goel N, 2015 Resting metabolic rate varies by race and by sleep duration. Obesity (Silver Spring) 23: 2349–2356.

    Article  Google Scholar 

  47. Wang X, You T, Lenchik L, Nicklas BJ, 2010 Resting energy expenditure changes with weight loss: racial differences. Obesity (Silver Spring) 18: 86–91.

    Article  Google Scholar 

  48. Leonard WR, Sorensen MV, Galloway VA, et al, 2002 Climatic influences on basal metabolic rates among circumpolar populations. Am J Hum Biol 14: 609–620.

    Article  PubMed  Google Scholar 

  49. Dugas LR, Cohen R, Carstens MT, et al, 2009 Total daily energy expenditure in black and white, lean and obese South African women. Eur J Clin Nutr 63: 667–673.

    Article  PubMed  CAS  Google Scholar 

  50. DeLany JP, Bray GA, Harsha DW, Volaufova J, 2002 Energy expenditure in preadolescent African-American and white boys and girls: the Baton Rouge Children’s Study. Am J Clin Nutr 75: 705–713.

    Article  PubMed  CAS  Google Scholar 

  51. Molnár D, Schutz Y, 1997 The effect of obesity, age, puberty and gender on resting metabolic rate in children and adolescents. Eur J Pediatr 156: 376–381.

    Article  PubMed  Google Scholar 

  52. Van Mil EG, Westerterp KR, Kester AD, Saris WH, 2001 Energy metabolism in relation to body composition and gender in adolescents. Arch Dis Child 85: 73–78.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vermorel M, Lazzer S, Bitar A, et al, 2005 Contributing factors and variability of energy expenditure in non-obese, obese, and post-obese adolescents. Reprod Nutr Dev 45: 129–142.

    Article  PubMed  Google Scholar 

  54. Katch V, Rocchini A, Becque D, Marks C, Moorehead K, 1985 Basal metabolism of obese adolescents: age, gender and body composition effects. Int J Obes 9: 69–76.

    PubMed  CAS  Google Scholar 

  55. Diffey B, Piers SL, Soares JM, O’dea K, 1997 The effect of oral contraceptive agents on the basal metabolism rate of young women. Br J Nutr 77: 853–862.

    Article  PubMed  CAS  Google Scholar 

  56. Astrup A, Buemann B, Christensen NJ, et al, 1992 The contribution of body composition, substrates, and hormones to the variability in energy expenditure and substrate utilization in premenopausal women. J Clin Endocrinol Metab 74: 279–286.

    PubMed  CAS  Google Scholar 

  57. Svendsen OL, Hassager C, Christiansen C, 1993 Impact of regional and total body composition and hormones on resting energy expenditure in overweight postmenopausal women. Metabolism 42: 1588–1591.

    Article  PubMed  CAS  Google Scholar 

  58. Bernstein RS, Thornton JC, Yang MU, et al, 1983 Prediction of the resting metabolic rate in obese patients. Am J Clin Nutr 37: 595–602.

    Article  PubMed  CAS  Google Scholar 

  59. Stenlöf K, Sjöström L, Fagerberg B, Nyström E, Lindstedt G, 1993 Thyroid hormones, procollagen III peptide, body composition and basal metabolic rate in euthyroid individuals. Scand J Clin Lab Invest 53: 793–803.

    Article  PubMed  Google Scholar 

  60. Farooqi IS, Matarese G, Lord GM, et al, 2002 Beneficial effects of leptin on obesity, T-cell hyporesponsiveness and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 110: 1093–1103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Deemer SE, King GA, Dorgo S, Vella CA, Tomaka JW, Thompson DL, 2010 Relationship of leptin, resting metabolic rate, and body composition in premenopausal Hispanic and non-Hispanic White women. Endocr Res 35: 95–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ruige JB, Ballaux DP, Funahashi T, Mertens IL, Matsuzawa Y, Van Gaal LF, 2005 Resting metabolic rate is an important predictor of serum adiponectin concentrations: potential implications for obesity-related disorders. Am J Clin Nutr 82: 21–25.

    Article  PubMed  CAS  Google Scholar 

  63. Salmenniemi U, Zacharova J, Ruotsalainen E, et al, 2005 Association of adiponectin levels and variants in the adiponectin gene with glucose metabolism, energy expenditure, and cytokines in offspring of type 2 diabetic patients. J Clin Endocrinol Metab 90: 4216–4223.

    Article  PubMed  CAS  Google Scholar 

  64. Stefan N, Vozarova B, Funahashi T, et al, 2002 Plasma adiponectin levels are not associated with fat oxidation in humans. Obes Res 10: 1016–1020.

    Article  PubMed  CAS  Google Scholar 

  65. Jamaluddin MS, Weakly SM, Yao Q, Chen C, 2012 Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol 165: 622–632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Weyer C, Bogardus C, Pratley RE, 1999 Metabolic factors contributing to increased resting metabolic rate and decreased insulin-induced thermogenesis during the development of type 2 diabetes. Diabetes 48: 1607–1614.

    Article  PubMed  CAS  Google Scholar 

  67. Butte NF, Hopkinson JM, Mehta N, Moon JK, Smith EO, 1999 Adjustment in energy expenditure and substrate utilization during late pregnancy and lactation. Am J Clin Nutr 69: 299–307.

    Article  PubMed  CAS  Google Scholar 

  68. Sadowska J, Gębczyhski AK, Konarzewski M, 2017 Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets. PLoS One 12: e0172892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kvapil M, 1993 Energy expenditure at rest in patients with active rheumatoid arthritis and malnutrition. Vnitr Lek 39: 31–37. Article in Czech.

    PubMed  CAS  Google Scholar 

  70. Metsios GS, Stavropoulos-Kalinoglou A, Nevill AM, Douglas KM, Koutedakis Y, Kitas GD, 2008 Cigarette smoking significantly increases basal metabolic rate in patients with rheumatoid arthritis. Ann Rheum Dis 67: 70–73

    Article  PubMed  CAS  Google Scholar 

  71. Dasgupta S, Salman M, Lokesh S, et al, 2012 Menopause versus aging: The predictor of obesity and metabolic aberrations among menopausal women of Karnataka, South India. J Midlife Health 3: 24–30.

    PubMed  PubMed Central  Google Scholar 

  72. Goran MI, 2005. Estimating energy requirements: regression based prediction equations or multiples of resting metabolic rate. Public Health Nutr 8: 1184–1186.

    Article  PubMed  Google Scholar 

  73. van Pelt RE, Dinneno FA, Seals DR, Jones PP, 2001 Age-related decline in RMR in physically active men: relation to exercise volume and energy intake. Am J Physiol Endocrinol Metab 281: E633–E639.

    Article  PubMed  Google Scholar 

  74. Stiegler P, Cunliffe A, 2006 The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med 36: 239–262.

    Article  PubMed  Google Scholar 

  75. Horton TJ, Drougas HJ, Sharp TA, Martinez LR, Reed GW, Hill JO, 1985 Energy balance in endurance-trained female cyclists and untrained controls. J Appl Physiol 76: 1936–1945.

    Google Scholar 

  76. Schulz LO, Nyomba BL, Alger S, Anderson TE, Ravussin E, 1991 Effect of endurance training on sedentary energy expenditure measured in a respiratory chamber. Am J Physiol 260: E257–E261.

    PubMed  CAS  Google Scholar 

  77. Sjödin AM, Forslund AH, Westerterp KR, Andersson AB, Forslund JM, Hambraeus LM, 1996 The influence of physical activity on BMR. Med Sci Sports Exerc 28: 85–91.

    Article  PubMed  Google Scholar 

  78. Wilmore JH, Stanforth PR, Hudspeth LA, et al, 1998 Alterations in resting metabolic rate as a consequence of 20 wk of endurance training: the HERITAGE Family Study. Am J Clin Nutr 68: 66–71.

    Article  PubMed  CAS  Google Scholar 

  79. Poehlman ET, Denino WF, Beckett T, et al, 2002 Effects of endurance and resistance training on total daily energy expenditure in young women: a controlled randomized trial. J Clin Endocrinol Metab 87: 1004–1009.

    Article  PubMed  CAS  Google Scholar 

  80. Woods AL, Sharma AP, Garvican-Lewis LA, Saunders P, Rice T, Thompson KG, 2016 Four weeks of classical altitude training increases resting metabolic rate in highly trained middle-distance runners. Int J Sport Nutr Exerc Metab 24: 1–23.

    Google Scholar 

  81. Lee MG, Sedlock DA, Flynn MG, Kamimori GH, 2009 Resting metabolic rate after endurance exercise training. Med Sci Sports Exerc 41: 1444–1451.

    Article  PubMed  Google Scholar 

  82. Gilliat-Wimberly M, Manore MM, Woolf K, Swan PD, Carroll SS, 2001 Effects of habitual physical activity on the resting metabolic rates and body compositions of women aged 35–50 years. J Am Diet Assoc 101: 1181–1188.

    Article  PubMed  CAS  Google Scholar 

  83. Fontvieille AM, Lillioja S, Ferraro RT, Schulz LO, Rising R, Ravussin E, 1992 Twenty-four-hour energy expenditure in Pima Indiands with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 35: 753–759.

    PubMed  CAS  Google Scholar 

  84. Bitz C, Toubro S, Larsen TM, et al, 2004 Increased 24-h energy expenditure in type 2 diabetes. Diabetes Care 27: 2416–2421.

    Article  PubMed  Google Scholar 

  85. Miyake R, Ohkawara K, Ishikawa-Takata K, Morita A, Watanabe S, Tanaka S, 2011 Obese Japanese adults with type 2 diabetes have higher basal metabolic rates than non-diabetic adults. J Nutr Sci Vitaminol (Tokyo) 57: 348–354.

    Article  CAS  Google Scholar 

  86. St-Onge MP, Roberts AL, Chen J, et al, 2011 Short sleep duration increases energy intake but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr 94: 410–416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD, 2009 Sleep curtailment is accompanied by increase intake of calories from snacks. Am J Clin Nutr 89: 126–133.

    Article  PubMed  CAS  Google Scholar 

  88. Tentolouris N, Liatis S, Katsilambros N, 2006 Sympathetic system activity in Obesity and metabolic syndrome. Ann N Y Acad Sci 1083: 129–152.

    Article  PubMed  CAS  Google Scholar 

  89. Hofstetter A, Schutz Y, Jéquier E, Wahren J, 1986 Increased 24-hour energy expenditure in cigarette smokers. N Engl J Med 314: 79–82.

    Article  PubMed  CAS  Google Scholar 

  90. Hayter JE, Henry CJ, 1993 Basal metabolic rate in human subjects migrating between tropical and temperate regions: a longitudinal study and review of previous work. Eur J Clin Nutr 47: 724–734.

    PubMed  CAS  Google Scholar 

  91. Dinachandra Singh K, Nagdeve DA, 2013 Differentials in Basal Metabolic rate, Body Mass Index and Diabetes in selected states of India. Poster session presented at: XXVII IUSSP International Population Conference; 2013 Aug 26–31; Busan, Republic of Korea.

  92. United Nations University, 2004 World Health Organization, Food and Agricultural Organization of the United Nations. Human Energy Requirements. Geneva: WHO FAO Technical Report Series, 1: 53–62.

  93. Butte NF, King JC, 2005 Energy requirement during pregnancy and lactation. Public Health Nutr 8: 1010–1027.

    PubMed  Google Scholar 

  94. Prentice A, Spaajic C, Goldberg GR, et al, 1996 Energy requirement of pregnant and lactating women. Eur J Clin Nutr 50: S82–S111.

    PubMed  Google Scholar 

  95. Melzer K, Schutz Y, Boulvain M, Kayser B, 2009 Pregnancy related changes in activity energy expenditure and resting metabolic rate in Switzerland. Eur J Clin Nutr 63: 1185–1191.

    Article  PubMed  CAS  Google Scholar 

  96. Martin K, Wallace P, Rust PF, Garvey WT, 2004 Estimation of resting energy expenditure, considering effects of race and diabetes status. Diabetes Care 27: 1405–1411.

    Article  PubMed  Google Scholar 

  97. American College of Obstetricians and Gynecologists, 2013 ACOG Committee Opinion no. 548: weight gain during pregnancy. Obstet Gynecol 121: 210–212.

    Article  Google Scholar 

  98. Haugen M, Brantsaeter AL, Winkvist A, et al, 2014 Associations of pre-pregnancy body mass index and gestational weight gain with pregnancy outcome and postpartum weight retention: a prospective observational cohort study. BMC Pregnancy Childbirth 14: 201.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Morisset AS, Tchernof A, Dubé MC, Veillette J, Weisnagel J, Robitaille J, 2011 Weight gain measures in women with gestational diabetes mellitus. J Womens Health (Larchmt) 20: 375–380.

    Article  Google Scholar 

  100. MacSween K, Whelan E, Woolcott CG, 2016 Gestational weight gain and perinatal outcomes in adolescent mothers: A retrospective cohort study. J Obstet Gynaecol Can 38: 338–345.

    Article  PubMed  Google Scholar 

  101. Siega-Riz AM, Viswanathan M, Moos MK, et al, 2009 A systematic review of outcomes of maternal weight gain according to the institute of Medicine recommendations: birthweight, fetal growth, and postpartum weight retention. Am J Obstet Gynecol 201: 339.e1–339.e14.

    Article  Google Scholar 

  102. Ludwig DS, Currie J, 2010 The association between pregnancy weight and birthweight: a within-family comparison. Lancet 376: 984–990.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ferraro ZM, Barrowman N, Prud’homme D, et al, 2012 Excessive gestational weight gain predicts large for gestational age neonates independent of maternal body mass index. J Mattern Fetal Neonatal Med 25: 538–542.

    Article  CAS  Google Scholar 

  104. Widen EM, Whyatt RM, Hoepner LA, et al, 2015 Excessive gestational weight gain is associated with long term body fat and weight retention at 7 y postpartum in African American and Dominican mothers with underweight, normal, and overweight prepregnancy BMI. Am J Clin Nutr 102: 1460–1467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ferraro ZM, Contador F, Tawfiq A, Adamo KB, Gaudet L, 2015 Gestational weight gain and medical outcomes of pregnancy. Obstet Med 8: 133–137.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gibson KS, Waters TP, Catalano PM, 2014 Maternal weight gain in women who develop gestational diabetes mellitus. Obstet Gynecol 119: 560–565.

    Article  Google Scholar 

  107. Ruifrok AE, van Poppel MN, van Wely M, et al, 2014 Association between weight gain during pregnancy and pregnancy outcomes after dietary and lifestyle interventions: a meta-analysis. Am J Perinatol 31: 353–364.

    PubMed  CAS  Google Scholar 

  108. McDonald SC, Bodnar LM, Himes KP, Hutcheon JA, 2017 Patterns of gestational weight gain in early pregnancy and risk of gestational diabetes mellitus. Epidemiology doi: 10.1097/EDE.0000000000000629 [Epub ahead of print].

  109. Kennelly MA, McAuliffe FM, 2016 Prediction and prevention of gestational diabetes: an update of recent literature. Eur J Obstet Gynecol Reprod Biol 202: 92–98.

    Article  PubMed  CAS  Google Scholar 

  110. Chasan-Taber L, Evenson KR, Sternfeld B, Kengeri S, 2007 Assessment of recreational physical activity during pregnancy in epidemiologic studies of birthweight and length of gestation: methodologic aspects. Women Health 45: 85–107.

    Article  PubMed  Google Scholar 

  111. Thangaratinam S, Rogozihska E, Jolly K, et al, 2012 Effects of interventions in pregnancy on maternal weight and obstetric outcomes: a meta-analysis of randomized evidence. BMJ 344: e2088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Cox JT, Phelan ST, 2008 Nutrition during pregnancy. Obstet Gynecol Clin North Am 35: 369–383.

    Article  PubMed  Google Scholar 

  113. Jebeile H, Mijatovic J, Louie JC, Prvan T, Brand-Miller JC, 2016 A systematic review and metaanalysis of energy intake and weight gain in pregnancy. Am J Obstet Gynecol 214: 465–483.

    Article  PubMed  Google Scholar 

  114. Tanentsapf I, Heitmann BL, Adeqboye AR, 2011 Systematic review of clinical trials on dietary interventions to prevent excessive weight gain during pregnancy among normal weight, overweight and obese women. BMC Pregnancy Childbirth 11: 81.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Dean SV, Lassi ZS, Imam AM, Bhutta ZA, 2014 Preconception care: nutritional risks and interventions. Reprod Health 11: S3.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Morisset AS, Côté JA, Michaud A, et al, 2014 Dietary intakes in the nutritional management of gestational diabetes mellitus. Can J Diet Pract Res 75: 64–71.

    Article  PubMed  Google Scholar 

  117. Karamanos B, Thanopoulou A, Anastasiou E, et al, 2014 Relation of the Mediterranean diet with the incidence of gestational diabetes. Eur J Clin Nutr 68: 8–13.

    Article  PubMed  CAS  Google Scholar 

  118. Vassilaki M, Chatzi L, Georgiou V, et al, 2015 Pregestational excess weight, maternal obstetric complications and mode of delivery in the Rhea cohort in Crete. Eur J Public Health 25: 632–637.

    Article  PubMed  Google Scholar 

  119. Shefali AK, Kavitha M, Deepa R, Mohan V, 2006 Pregnancy outcomes in pre-gestational and gestational diabetic women — A prospective study in Asian Indian mothers (CURES-35). J Assoc Physicians India 54: 613–618.

    PubMed  CAS  Google Scholar 

  120. Barakat MN, Youssef RM, Al-Lawati JA, 2010 Pregnancy outcomes of diabetic women: Charting Oman’s progress towards the goals of the Saint Vincent declaration. Ann Saudi Med 30: 265–270.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wahabi HA, Esmaeil SA, Fayed A, Al-Shaikh G, Alzeidan RA, 2012 Pre-existing diabetes mellitus and adverse pregnancy outcomes. BMC Res Notes 5: 496.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Metzger BE, Coustan DR, 1998 Summary and recommendations of the Fourth International Workshop-Conference on Gestational Diabetes Mellitus. The Organizing Committee. Diabetes Care 2: B161–B167.

    Google Scholar 

  123. Carolan M, Davey MA, Biro MA, Kealy M, 2012 Maternal age, ethnicity and gestational diabetes mellitus. Midwifery 28: 778–783.

    Article  PubMed  Google Scholar 

  124. Langer O, Yogev Y, Most O, Xenakis EM, 2005 Gestational diabetes: the consequences of not treating. Am J Obstet Gynecol 192: 989–997.

    Article  PubMed  Google Scholar 

  125. Bellamy L, Casas JP, Hingorani AD, Williams D, 2009 Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373: 1773–1779.

    Article  PubMed  CAS  Google Scholar 

  126. Hopmans TE, van Houten C, Kasius A, et al, 2015 Increased risk of type II diabetes mellitus and cardiovascular disease after gestational diabetes mellitus: a systematic review. Ned Tijdschrift Geneeskd 159: A8043. Dutch.

    Google Scholar 

  127. Rosenberg TJ, Garbers S, Lipkind H, Chiasson MA, 2005 Maternal obesity and diabetes as risk factors for adverse pregnancy outcomes: differences among 4 racial/ethnic groups. Am J Public Health 95: 1545–1551.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Jenum AK, Mørkrid K, Sletner L, et al, 2012 Impact of ethnicity on gestational diabetes identified with WHO and the modified International Association of Diabetes and Pregnancy Study Groups criteria: a population-based cohort study. Eur J Endocrinol 166: 317–324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Makgoba M, Savvidou MD, Steer P J, 2012 An analysis of the interrelationship between maternal age, body mass index and racial origin in the development of gestational diabetes mellitus. BJOG 119: 276–282.

    Article  PubMed  CAS  Google Scholar 

  130. Schimmel MS, Bromiker R, Hammerman C, et al, 2014 The effects of maternal age and parity on maternal and neonatal outcome. Arch Gynecol Obstet 291: 793–798.

    Article  PubMed  CAS  Google Scholar 

  131. Lao TT, Ho LF, Chan BC, Leung WC, 2006 Maternal age and prevalence of gestational diabetes mellitus. Diabetes Care 29: 948–949.

    Article  PubMed  Google Scholar 

  132. Abouzeid M, Versace VL, Janus ED, et al, 2015 Sociocultural disparities in GDM burden differ by maternal age at first delivery. PLoS One 10: e0117085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Schwartz N, Nachum Z, Green MS, 2015 The prevalence of gestational diabetes mellitus recurrence-effect of ethnicity and parity: a metaanalysis. Am J Obstet Gynecol 213: 310–317.

    Article  PubMed  Google Scholar 

  134. Savitz DA, Janevic TM, Engel SM, Kaufman JS, Herring AH, 2008 Ethnicity and gestational diabetes in New York City, 1995–2003. BJOG 115: 969–978.

    Article  PubMed  CAS  Google Scholar 

  135. Retnakaran R, Hanley AJ, Connelly PW, Sermer M, Zinman B, 2006 Ethnicity modifies the effect of obesity on insulin resistance in pregnancy: a comparison of Asian, South Asian, and Caucasian women. J Clin Endocrinol Metab 91: 93–97.

    Article  PubMed  CAS  Google Scholar 

  136. Dooley SL, Metzger BE, Cho NH, 1991 Gestational diabetes mellitus. Influence of race on disease prevalence and perinatal outcome in a U.S. population. Diabetes 40: 25–29

    Article  PubMed  Google Scholar 

  137. Saldana TM, Siega-Riz AM, Adair LS, 2004 Effects of macronutrient intake on the development of glucose intolerance during pregnancy. Am J Clin Nutr 79: 479–486.

    Article  PubMed  CAS  Google Scholar 

  138. Ley SH, Hanley AJ, Retnakaran R, Sermer M, Zinman B, O’Connor DL, 2011 Effect of macronutrient intake during the second trimester in glucose metabolism later in pregnancy. Am J Clin Nutr 94: 1232–1240.

    Article  PubMed  CAS  Google Scholar 

  139. Bowers K, Tobias DK, Yeung E, Hu FB, Zhang C, 2012 A prospective study of prepregnancy dietary fat intake and risk of gestational diabetes. Am J Clin Nutr 95: 446–453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Bao W, Bowers K, Tobias DK, Hu FB, Zhang C, 2013 Prepregnancy dietary protein intake, major dietary protein sources, and the risk of gestational diabetes mellitus: a prospective cohort study. Diabetes Care 36: 2001–2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Xu Q, Gao ZY, Li LM, et al, 2016 The association of maternal body composition and dietary intake with the risk of gestational diabetes mellitus during the second trimester in a cohort of Chinese pregnant women. Biomed Environ Sci 29: 1–11.

    PubMed  Google Scholar 

  142. Schwartz N, Green MS, Yefet E, Nachum Z, 2016 Modifiable risk factors for gestational diabetes recurrence. Endocrine 54: 714–722.

    Article  PubMed  CAS  Google Scholar 

  143. Yessoufou A, Moutairou K, 2011 Maternal diabetes in pregnancy: early and long-term outcomes on the offspring and the concept of “metabolic memory”. Exp Diabetes Res 2011: 218598.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yin YN, Li XL, Tao TJ, Luo BR, Liao SJ, 2014 Physical activity during pregnancy and the risk of gestational diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Br J Sports Med 48: 290–295.

    Article  PubMed  Google Scholar 

  145. Russo LM, Nobles C, Ertel KA, Chasan-Taber L, Whitcomb BW, 2015 Physical activity interventions in pregnancy and risk of gestational diabetes mellitus: a systematic review and meta-analysis. Obstet Gynecol 125: 576–582.

    Article  PubMed  Google Scholar 

  146. Tobias DK, Zhang C, van Dam RM, Bowers K, Hu FB, 2011 Physical activity before and during pregnancy and risk of gestational diabetes mellitus: a meta-analysis. Diabetes Care 34: 223–229.

    Article  PubMed  Google Scholar 

  147. Sanabria-Martínez G, García-Hermoso A, Poyatos-León R, Álvarez-Bueno C, Sánchez-López M, Martínez-Vizcaíno V, 2015 Effectiveness of physical activity interventions on preventing gestational diabetes mellitus and excessive maternal weight gain: a meta-analysis. BJOG 122: 1167–1174.

    Article  PubMed  Google Scholar 

  148. Hosier AS, Nayak SG, Radigan AM, 2011 Stressful events, smoking exposure and other factors associated with gestational diabetes mellitus. Paediatr Perinat Epidemiol 25: 566–574.

    Article  Google Scholar 

  149. Sit D, Luther J, Dills JL, Eng H, Wisniewski S, Wisner KL, 2014 Abnormal screening for gestational diabetes, maternal mood disorder, and preterm birth. Bipolar Disord 16: 308–317.

    Article  PubMed  CAS  Google Scholar 

  150. Horsch A, Kang JS, Vial Y, et al, 2016 Stress exposure and physiological stress responses are related to glucose concentrations during pregnancy. Br J Health Psychol. 21: 712–729.

    Article  PubMed  Google Scholar 

  151. Fisher JE, Smith RS, Lagrandeur R, Lorenz RP, 1997 Gestational diabetes mellitus in women receiving beta-adrenergics and corticosteroids for threatened preterm delivery. Obstet Gynecol 90: 880–883.

    Article  PubMed  CAS  Google Scholar 

  152. Riskin-Mashiah S, Dampti A, Younes G, Auslender R, 2010 First trimester fasting hyperglycemia as a predictor for the development of gestational diabetes mellitus. Eur J Obstet Genecol Reprod Biol 152: 163–167.

    Article  CAS  Google Scholar 

  153. Smirnakis KV, Martinez A, Blatman KH, Wolf M, Ecker JL, Thadhani R, 2005 Early pregnancy insulin resistance and subsequent gestational diabetes mellitus. Diabetes Care 28: 1207–1208.

    Article  PubMed  Google Scholar 

  154. Grewal E, Kansara S, Kachhawa G, et al, 2012 Prediction of gestational diabetes mellitus at 24 to 28 weeks of gestation by using first-trimester insulin sensitivity indices in Asian Indian subjects. Metabolism 61: 715–720

    Article  PubMed  CAS  Google Scholar 

  155. Powe CE, 2017 Early pregnancy biochemical predictors of gestational diabetes mellitus. Curr Diab Rep 17: 12.

    Article  PubMed  CAS  Google Scholar 

  156. Fahami F, Torabli S, Abdoli S, 2015 Prediction of glucose intolerance at 24–28 weeks of gestation by glucose and insulin level measurements in the first semester. Iran J Nurs Midwifery Res 20: 81–86.

    PubMed  PubMed Central  Google Scholar 

  157. Hedderson MM, Xu F, Darbinian JA, et al, 2014 Prepregnancy SHBG concentrations and risk for subsequently developing gestational diabetes mellitus. Diabetes Care 37: 1296–1303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Maged AM, Moety GA, Mostafa WA, Hamed DA, 2014 Comparative study between different biomarkers for early prediction of gestational diabetes mellitus. J Matern Fetal Neonatal Med 27: 1108–1112.

    Article  PubMed  CAS  Google Scholar 

  159. Smirnakis KV, Plati A, Wolf M, Thadhani R, Ecker JL, 2007 Predicting gestational diabetes: choosing the optimal early serum marker. Am J Obstet Gynecol 196: 410.e1–410.e7.

    Article  CAS  Google Scholar 

  160. Al-Badri MR, Zantout MS, Azar ST, 2015 The role of adipokines in gestational diabetes mellitus. Ther Adv Endocrinol Metab 6: 103–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Moreli JB, Corrêa-Silva S, Damasceno DC, et al, 2015 Changes in the TNF-alpha/IL-10 ratio in hyperglycemia-associated pregnancies. Diabetes Res Clin Pract 107: 362–369.

    Article  PubMed  CAS  Google Scholar 

  162. Fasshauer M, Blüher M, Stumvoll M, 2013 Adipokines in gestational diabetes. Lancet Diabetes Endocrinol 2: 488–499.

    Article  PubMed  CAS  Google Scholar 

  163. Matuszek B, Burska A, Leszczyńska-Gorzelak B, Donica H, Nowakowski A, 2013 Comparative analysis of adiponectin isoform distribution in pregnant women with gestational diabetes mellitus and after delivery. Acta Obstet Gynecol Scand 92: 951–959.

    Article  PubMed  CAS  Google Scholar 

  164. Bao W, Baecker A, Song Y, Kiely M, Liu S, Zhang C, 2015 Adipokine levels during the first or early second trimester of pregnancy and subsequent risk of gestational diabetes mellitus: a systematic review. Metabolism 64: 756–764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Skvarsca A, Tomazic M, Krhin B, Blagus R, Janez A, 2012 Adipocytokines and insulin resistance across various degrees of glucose tolerance in pregnancy. J Int Med Res 40: 583–589.

    Article  Google Scholar 

  166. Qiu C, Williams MA, Vadachkoria S, Frederick IO, Luthy DA, 2004 Increased maternal plasma leptin in early pregnancy and risk of gestational diabetes mellitus. Obstet Gynecol 103: 519–525.

    Article  PubMed  CAS  Google Scholar 

  167. Maple-Brown L, Ye C, Hanley AJ, et al, 2012 Maternal pregravid weight is the primary determinant of serum leptin and its metabolic associations in pregnancy, irrespective of gestational glucose tolerance status. J Clin Endocrinol Metab 97: 4148–4155.

    Article  PubMed  CAS  Google Scholar 

  168. Berglund SK, Garcia-Valdés L, Torres-Espinola FJ, et al, 2016 Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: an observational study (PREOBE). BMC Public Health 16: 207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Qiu C, Vadachkoria S, Meryman L, Frederick IO, Williams MA, 2005 Maternal plasma concentrations of IGF-1, IGFBP-1, and C-peptide in early pregnancy and subsequent risk of gestational diabetes mellitus. Am J Obstet Gynecol 193: 1691–1697.

    Article  PubMed  CAS  Google Scholar 

  170. Ramirez VI, Miller E, Meireles CL, Gelfond J, Krummel DA, Powell TL, 2014 Adiponectin and IGFBP-1 in the development of gestational diabetes in obese mothers. BMJ Open Diabetes Res Care 2: e000010.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Keller-Wood M, Feng X, Wood CE, et al, 2014 Elevated maternal Cortisol leads to relative maternal hyperglycemia and increased stillbirth in ovine pregnancy. Am J Physiol Regul Integr Comp Physiol 307: R405–R413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Gorar S, Abanonu GB, Uysal A, et al, 2017 Comparison of thyroid function tests and blood count in pregnant women with versus without gestational diabetes mellitus. J Obstet Gynaecol Res [Epub ahead of print] doi: 10.1111/jog.13280

  173. Haddow JE, Craig WY, Neveux LM, et al, 2016 Free thyroxine during early pregnancy and risk for gestational diabetes. PLoS One 11: e0149065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Khambalia AZ, Collins CE, Roberts CL, et al, 2016 Iron deficiency in early pregnancy using serum ferritin and soluble transferrin receptor concentrations are associated with pregnancy and birth outcomes. Eur J Clin Nutr 70: 358–363.

    Article  PubMed  CAS  Google Scholar 

  175. Ergen N, Bulgurlu SS, Dayan A, et al, 2013 The effects of gestational diabetes on basal metabolic rate in pregnancy. In: ECE 2013 Programme Organising Committee (ed) Endocrine Abstracts: 15th European Congress of Endocrinology, BioScientifica, Bristol, pp, 172, P374.

    Google Scholar 

  176. Mouzon SH, Lassance L, 2015 Endocrine and metabolic adaptations to pregnancy; impact of obesity. Horm Mol Biol Clin Investig 24: 65–72.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftheria Taousani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taousani, E., Savvaki, D., Tsirou, E. et al. Regulation of basal metabolic rate in uncomplicated pregnancy and in gestational diabetes mellitus. Hormones 16, 235–250 (2017). https://doi.org/10.1007/BF03401518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401518

Key words

Navigation