Skip to main content
Log in

A Global Existence Result for a Keller-Segel Type System With Supercritical Initial Data

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

We consider a parabolic-elliptic Keller-Segel type system, which is related to a simplified model of chemotaxis. Concerning the maximal range of existence of solutions, there are essentially two kinds of results: either global existence in time for general subcritical (ǁρ0ǁ1 < 8π) initial data, or blow—up in finite time for suitably chosen supercritical (ǁρ0ǁ1 > 8π) initial data with concentration around finitely many points. As a matter of fact there are no results claiming the existence of global solutions in the supercritical case. We solve this problem here and prove that, for a particular set of initial data which share large supercritical masses, the corresponding solution is global and uniformly bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams, “Sobolev Spaces”, Academic Press, New York, 1975.

  2. D. Bartolucci, Existence and non existence results for supercritical systems of Liouville-type equations on simply connected domains, Calc. Var. P. D. E., to appear DOI 10.1007/s00526-014-0750-9.

  3. D. Bartolucci, F. De Marchis, Supercritical Mean Field Equations on convex domains and the Onsager’s statistical description of two-dimensional turbulence, Arch. Rat. Mech. Anal., 217/2 (2015), 525–570; DOI: 10.1007/s00205-014-0836-8.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Burczak, R. Granero-Belinchon, Critical Keller- Segel meets Burgers on S1, preprint arXiv:1504.00955.

  5. J. Burczak, R. Granero-Belinchon, Global solutions for a supercritical drift-diffusion equation, preprint arXiv:1507.00694.

  6. P. Biler, Local and global solvability of some systems modelling chemotaxis, Adv. Math. Sci. Appl. 8 (1998), 715–743.

    MathSciNet  MATH  Google Scholar 

  7. H. Brezis & F. Merle, Uniform estimates and blow-up behaviour for solutions of —Δu = V (x)eu in two dimensions, Comm. in P.D.E. 16(8,9) (1991), 1223–1253.

    Article  MATH  Google Scholar 

  8. E. Caglioti, P.L. Lions, C. Marchioro & M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description. II, Comm. Math. Phys. 174 (1995), 229–260.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. C. Chen, C.S. Lin, Topological Degree for a mean field equation on Riemann surface, Comm. Pure Appl. Math. 56 (2003), 1667–1727.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Clément & G. Sweers, Getting a solution between sub- and supersolutions without monotone iteration, Rend. Istit. Mat. Univ. Trieste 19 (1987), 189–194.

    MathSciNet  MATH  Google Scholar 

  11. H. Gajewski, K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr. 195 (1998), 77–114.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Jager, S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), 819–824.

    Article  MathSciNet  MATH  Google Scholar 

  13. E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), 399–415.

    Article  MATH  Google Scholar 

  14. A. Kufner, O. Jhon & S. Fučik, ”Function spaces”, Academia, Prague, 1977.

    Google Scholar 

  15. A. Kiselev, X. Xu, Suppression of chemotactic explosion by mixing, preprint arXiv:1508.05333.

  16. J. Liouville, Sur L’ Équation aux Différence Partielles \(\frac{{{d^2}\log \lambda }}{{dudv}} \pm \frac{\lambda }{{2{a^2}}} = 0\), CR. Acad. Sci. Paris 36 (1853), 71–72.

    Google Scholar 

  17. J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077–1091.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Senba, T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis, J. Funct. Anal. 191 (2002), 17–51.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Suzuki, ”Free Energy and Self-Interacting Particles”, PNLDE 62, Birkhauser, Boston, (2005).

  20. T. Suzuki, Exclusion of boundary blowup for 2D chemotaxis system provided with Dirichlet boundary condition for the Poisson part, J. Math. Pure Appl. 100 (2013), 347–367.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Anal. Math. 59 (1992), 251–272.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Bartolucci.

Additional information

Research partially supported by FIRB project Analysis and Beyond and by MIUR project Metodi variazionali e PDE non lineari.

Research partially supported by project Bando Giovani Studiosi 2013 - Università di Padova - GRIC131695.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartolucci, D., Castorina, D. A Global Existence Result for a Keller-Segel Type System With Supercritical Initial Data. J Elliptic Parabol Equ 1, 243–262 (2015). https://doi.org/10.1007/BF03377379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03377379

2010 Mathematics Subject Classification

Key words and phrases

Navigation