Skip to main content
Log in

The Pondicherry interpretation of quantum mechanics: An overview

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

An overview of the Pondicherry interpretation of quantum mechanics is presented. This interpretation proceeds from the recognition that the fundamental theoretical framework of physics is a probability algorithm, which serves to describe an objective fuzziness (the literal meaning of Heisenberg’s term ‘Unschärfe’, usually mistranslated as ‘uncertainty’) by assigning objective probabilities to the possible outcomes of unperformed measurements. Although it rejects attempts to construe quantum states as evolving ontological states, it arrives at an objective description of the quantum world that owes nothing to observers or the goings-on in physics laboratories. In fact, unless such attempts are rejected, quantum theory’s true ontological implications cannot be seen. Among these are the radically relational nature of space, the numerical identity of the corresponding relata, the incomplete spatio-temporal differentiation of the physical world, and the consequent top-down structure of reality, which defies attempts to model it from the bottom up, whether on the basis of an intrinsically differentiated space-time manifold or out of a multitude of individual building blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U Mohrhoff,Am. J. Phys. 68, 728 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. U Mohrhoff,Am. J. Phys. 69, 864 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  3. U Mohrhoff, inConsciousness and its transformation edited by M Cornelissen (Sri Aurobindo International Centre of Education, Pondicherry, 2001) p. 333

    Google Scholar 

  4. U Mohrhoff,Found. Phys. 32, 217 (2002)

    Article  MathSciNet  Google Scholar 

  5. U Mohrhoff,Mod. Phys. Lett. A17, 1107 (2002)

    ADS  MathSciNet  Google Scholar 

  6. U Mohrhoff,Found. Phys. 32, 1295 (2002)

    Article  Google Scholar 

  7. U Mohrhoff,Found. Phys. 32, 1313 (2002)

    Article  Google Scholar 

  8. L Marchildon,Found. Phys. 34, 59 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. U Mohrhoff,Found. Phys. 34, 75 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. U Mohrhoff,Int. J. Quantum Inf. 2, 201 (2004)

    Article  MATH  Google Scholar 

  11. U Mohrhoff, to appear in Progress in quantum physics research edited by V Krasnoholovets (Nova Science, New York), quant-ph/0305095

  12. C A Fuchs and A Peres,Phys. Today 53 (March), 70 (2000);53 (September), 14 (2000)

    Article  Google Scholar 

  13. Y Aharonov and L Vaidman,J. Phys. A24, 2315 (1991)

    ADS  MathSciNet  Google Scholar 

  14. N D Mermin,Phys. Today 49 (March), 11 (1996)

    Google Scholar 

  15. J S Bell, in62 Years of uncertainty edited by A I Miller (Plenum, New York, 1990) p. 17

    Google Scholar 

  16. F London and E Bauer, inQuantum theory and measurement edited by J A Wheeler and W H Zurek (Princeton University Press, Princeton, NJ), 1983 p. 217

    Google Scholar 

  17. E P Wigner, inThe scientist speculates edited by I J Good (Heinemann, London, 1961) p. 284

    Google Scholar 

  18. B d’Espagnat,Veiled reality: An analysis of present-day quantum mechanical concepts (Addison-Wesley, Reading, MA, 1995)

    Google Scholar 

  19. O Ulfbeck and A Bohr,Found. Phys. 31, 757 (2001)

    Article  MathSciNet  Google Scholar 

  20. A Petersen, quoted in A Pais, Niels Bohr’s Times, inPhysics, philosophy, and polity (Clarendon, Oxford, 1991) p. 426

    Google Scholar 

  21. R Peierls,Phys. World 4 (January), 19 (1991)

    Google Scholar 

  22. C A Fuchs, inDecoherence and its implications in quantum computation and information transfer edited by A Gonis and PEA Turchi (IOS Press, Amsterdam, 2001) p. 38

    Google Scholar 

  23. E H Lieb,Rev. Mod. Phys. 48, 553 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  24. C A Fuchs, inQuantum theory: Reconsideration of foundations edited by A Khrennikov (Växjö University Press, Växjö, 2002) p. 463

    Google Scholar 

  25. D Bohm,Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  26. G C Ghirardi, A Rimini and T Weber,Phys. Rev. D34, 470 (1986)

    ADS  MathSciNet  Google Scholar 

  27. P Pearle,Phys. Rev. A39, 2277 (1989)

    ADS  Google Scholar 

  28. B C van Fraassen,Quantum mechanics: An empiricist view (Clarendon Press, Oxford, 1991) pp. 241, 247, 280, 314

    Google Scholar 

  29. D Dieks,Phys. Rev. A49, 2290 (1994)

    ADS  Google Scholar 

  30. J A Wheeler, inQuantum theory and measurement edited by J A Wheeler and W H Zurek (Princeton University Press, Princeton, NJ, 1983) p. 182

    Google Scholar 

  31. D M Greenberger, M Horne and A Zeilinger, inBell’s theorem, quantum theory, and conceptions of the universe edited by M Kafatos (Kluwer, Dordrecht, 1989) p. 73

    Google Scholar 

  32. Y Aharonov, P G Bergmann and J L Lebowitz,Phys. Rev. B134, 1410 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  33. A Einstein,Dialectica 2, 320 (1948)

    Article  MATH  Google Scholar 

  34. J von Neumann,Mathematical foundations of quantum mechanics (Princeton University Press, Princeton, NJ, 1955)

    MATH  Google Scholar 

  35. J Hilgevoord,Am. J. Phys. 66, 396 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  36. R Audi,The Cambridge dictionary of philosophy (Cambridge University Press, Cambridge, 1995) p. 803

    Google Scholar 

  37. W H Zurek,Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  38. P Blanchard, D J W Giulini, E Joos, C Kiefer and I-O Stamatescu,Decoherence: Theoretical, experimental, and conceptual problems (Springer, Berlin, 2000)

    Google Scholar 

  39. E Joos, H D Zeh, C Kiefer, D J W Giulini, J Kupsch and I-O Stamatescu,Decoherence and the appearance of a classical world in quantum theory (Springer, New York, 2003)

    Google Scholar 

  40. S Treiman,The odd quantum (Princeton University Press, Princeton, NJ, 1999) p. 188

    MATH  Google Scholar 

  41. E Joos and H D Zeh,Z. Phys. B59, 223 (1985)

    Article  Google Scholar 

  42. P Pearle,Int. J. Theor. Phys. 18, 489 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  43. K R Popper, inQuantum theory and the schism in physics edited by W W Bartley, III (Rowan & Littlefield, Totowa, NJ, 1982)

    Google Scholar 

  44. W Heisenberg,Physics and philosophy (Harper and Row, New York, 1958)

    Google Scholar 

  45. A Shimony, inThe new physics edited by P Davies (Cambridge University Press, Cambridge, 1989) p. 373

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohrhoff, U. The Pondicherry interpretation of quantum mechanics: An overview. Pramana - J Phys 64, 171–185 (2005). https://doi.org/10.1007/BF02704872

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704872

Keywords

PACS Nos

Navigation