Skip to main content
Log in

Effects of land-use change on nutrient discharges from the Patuxent River watershed

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

We developed an empirical model integrating nonpoint source (NPS) runoff, point sources (PS), and reservoir management to predict watershed discharges of water, sediment, organic carbon, silicate, nitrogen, and phosphorus to the Patuxent River in Maryland. We estimated NPS discharges with linear models fit to measurements of weekly flow and 10 material concentrations from 22 study watersheds. The independent variables were the proportions of cropland and developed land, physiographic province (Coastal Plain or Piedmont), and time (week). All but one of the NPS models explained between 62% and 83% of the variability among concentration or flow measurements. Geographic factors (land cover and physiographic province) accounted for the explained variability in largely dissolved material concentrations (nitrate [NO3], silicate [Si], and total nitrogen [TN]), but the explained variability in flow and particulates (sediment and forms of phosphorus) was more strongly related to temporal variability or its interactions with land cover and province. Average concentrations of all materials increased with cropland proportion and also with developed land (except Si), but changes in cropland produced larger concentration shifts than equivalent changes in developed land proportion. Among land cover transitions, conversions between cropland and forest-grassland cause the greatest changes in material discharges, cropland and developed land conversions are intermediate, and developed land and forest-grassland conversions have the weakest effects. Changing land cover has stronger effects on NO3 and TN in the Piedmont than in the coastal Plain, but for all other materials, the effects of land-use change are greater in the Coastal Plain. We predicted the changes in nutrient load to the estuary under several alternate land cover configurations, including a state planning scenario that extrapolates current patterns of population growth and land development to the year 2020. In that scenario, declines in NPS discharges from reducing cropland are balanced by NPS discharge increases from developing an area almost six times larger than the lost cropland. When PS discharges are included, there are net increases in total water, total phosphorus, and TN discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alexander, R. B., R. A. Smith, andG. E. Schwarz. 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico.Nature 403:758–761.

    Article  CAS  Google Scholar 

  • Alexander, R. B., R. A. Smith, G. E. Schwarz, S. D. Preston, J. W. Brakebill, R. Srinivasan, andP. A. Pacheco. 2001. Atmospheric nitrogen flux from the watersheds of major estuaries of the United States: An application of the SPARROW watershed model, p. 119–170.In R. A. Valigura, R. B. Alexander, M. S. Castro, T. P. Meyers, H. W. Paerl, P. E. Stacey, and R. E. Turner (eds.), Nutrient Loading in Coastal Water Bodies: An Atmospheric Perspective, Volume 57. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Beaulac, M. N. andK. H. Reckhow. 1982. An examination of land use—Nutrient export relationships.Water Resources Bulletin 18:1013–1022.

    CAS  Google Scholar 

  • Bicknell, B. R., J. C. Imhoff, J. L. Kittle, A. S. Donigan, andR. C. Johanson. 1997. Hydrological simulation program FOR-TRAN (HSPF): User's manual for release 11. EPA-600/R-97-080, U.S. Environmental Protection Agency, Athens, Georgia.

    Google Scholar 

  • Bockstael, N. E. andE. G. Irwin. 2003. Public policy and the changing landscape.Estuaries 26:210–225.

    Article  Google Scholar 

  • Boesch, D. E., R. B. Brinsfield, andR. E. Magnien. 2001. Chesapeake Bay eutrophication: Scientific understanding, ecosystem restoration, and challenges for agriculture.Journal of Environmental Quality 30:303–320.

    CAS  Google Scholar 

  • Boynton, W. R., J. H. Garber, R. Summers, andW. M. Kemp. 1995. Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries.Estuaries 18:285–314.

    Article  CAS  Google Scholar 

  • Breitburg, D., D. L. Lipton, andT. E. Jordan. 2003. From ecology to economics: Tracing human influence in the Patuxent River estuary and its watershed.Esturies 26:280–297.

    Article  CAS  Google Scholar 

  • Bureau of the Census. 1990. Census of agriculture, 1987 on CD-ROM technical documentation. U.S. Department of Comerce, Washignton, D.C.

    Google Scholar 

  • Carpenter, S., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, andV. H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen.Ecological Applications 8:559–568.

    Article  Google Scholar 

  • Castro, M. S., C. T. Driscoll, T. E. Jordan, W. G. Reay, W. R. Boynton, S. P. Seitzinger, R. V. Styles, andJ. E. Cable. 2001. Contribution of atmospheric deposition to the total nitrogen loads to thirty-four estuaries on the Atlantic and Gulf coasts of the United States, p. 77–105.In R. A. Valigura, R. B. Alexander, M. S. Castro, T. P. Meyers, H. W. Paerl, P. E. Stacey, and R. E. Turner (eds.), Nutrient Loading in Coastal Water Bodies: An Atmospheric Perspective, Volume 57. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • C-CAP. 1992. CoastWatch Change Analysis Project (C-CAP): Chesapeake Bay land cover classification data, 1984 and 1988–89. NODC Environmental Information Bulletin Number 92-3. National Oceanographic Data Center, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, Washington, D.C.

    Google Scholar 

  • Correll, D. L. 1987. Nutrients in Chesapeake Bay, p. 298–320.In L. W. Hall, H. M. Austin, and S. K. Majumdar (eds.). Contaminant Problems and Management of Living Chesapeake Bay Resources. Pennsylvania Academy of Science. Easton, Pennsylvania.

    Google Scholar 

  • Correll, D. L., T. E. Jordan, andD. E. Weller. 1999a. Effects of interannual variation in precipitation on stream discharge from Rhode River subwatersheds.Journal of the American Water Resources Association 35:73–82.

    Article  Google Scholar 

  • Correll, D. L., T. E. Jordan, andD. E. Weller. 1999b. Effects of precipitation and air temperature on nitrogen discharges from Rhode River watersheds.Water Air and Soil Pollution 115: 547–575.

    Article  CAS  Google Scholar 

  • Correll, D. L., T. E. Jordan, andD. E. Weller. 1999c. Effects of precipitation and air temperature on phosphorus fluxes from Rhode River watersheds.Journal of Environmental Quality 28:144–154.

    CAS  Google Scholar 

  • Correll, D. L., T. E. Jordan, andD. E. Weller. 1999d. Precipitation effects on sediment and associated nutrient discharges from Rhode River watersheds.Journal of Environmental Quality 28:1897–1907.

    CAS  Google Scholar 

  • Correll, D. L., T. E. Jordan, andD. E. Weller. 1999e. Transport of nitrogen and phosphorus from Rhode River watersheds during storm events.Water Resources Research 35:2513–2521.

    Article  CAS  Google Scholar 

  • Correll, D. L. andD. E. Weller. 1997. Nitrogen input-output budgets for forests in the Chesapeake Bay watershed, p. 431–442.In J. E. Baker (ed.), Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. SETAC Press, Inc., Pensacola, Florida.

    Google Scholar 

  • Costanza, R., A. Voinov, R. Boumans, T. Maxwell, F. Villa, L. Wainger, andH. Voinov. 2002. Integrated ecologic economic modeling of the Patuxent River watershed, Maryland,Ecological Monographs 73:203–231.

    Google Scholar 

  • D'Elia, C. F., W. R. Boynton, andJ. G. Sanders. 2003. A watershed perspective on nutrient enrichment, science, and policy in the Patuxent River, Maryland: 1960–2000.Estuaries 26: 171–185.

    Article  Google Scholar 

  • DeWald, T., R. Horn, R. Greenspun, P. Taylor, L. Manning, andA. Montalbano. 1985. STORET reach retrieval documentation. U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Environmental Protection Agency-Environmental, Monitoring and Assessment Program (EPA-EMAP). 1994. Chesapeake Bay watershed pilot project EPA/620/R94/020. U.S. EPA-EMAP, Research Triangle Park, North Carolina.

    Google Scholar 

  • Frink, C. R. 1991. Estimating nutrient exports to estuaries.Journal of Environmental Quality 20:717–724.

    CAS  Google Scholar 

  • Hagy, J. D., W. R. Boynton, andL. P. Sanford. 2000. Estimation of net physical transport and hydraulic residence times for a Coastal Plain estuary using box models.Estuaries 23:328–340.

    Article  Google Scholar 

  • Harman, H. H. 1976. Modern Factor Analysis. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Jones, K. B., A. C. Neale, M. S. Nash, R. D. Van Remortel, J. D. Wickham, K. H. Riiters, andR. V. O'Neill. 2001. Predicting nutrient and sediment loadings to streams from landscape metrics: A multiple watershed study from the United States Mid-Atlantic region.Landscape Ecology 16:301–312.

    Article  Google Scholar 

  • Jordan, T. E., D. L. Correll, J. Miklas, andD. E. Weller. 1991a. Long-term trends in estuarine nutrients and chlorophyll, and short-term effects of variation in watershed discharge.Marine Ecology Progress Series 75:121–132.

    Google Scholar 

  • Jordan, T. E., D. L. Correll, J. Miklas, andD. E. Weller. 1991b. Nutrient dynamics at the interface of a watershed and estuary.Limnology and Oceanography 36:251–267.

    Article  CAS  Google Scholar 

  • Jordan, T. E., D. L. Correll, andD. E. Weller. 1993. Nutrient interception by a riparian forest receiving inputs from adjacent cropland.Journal of Environmental Quality 22:467–473.

    Google Scholar 

  • Jordan, T. J., D. L. Correll, andD. E. Weller. 1997a. Effects of agriculture on discharges of nutrients from coastal plain watersheds of Chesapeake Bay.Journal of Environmental Quality 26:836–848.

    CAS  Google Scholar 

  • Jordan, T. J., D. L. Correll, andD. E. Weller. 1997b. Nonpoint source discharges of nutrients from Piedmont watersheds of Chesapeake Bay.Journal of the American Water Resources Association 33:631–645.

    Article  CAS  Google Scholar 

  • Jordan, T. J., D. L. Correll, andD. E. Weller. 1997c. Relating nutrient discharges from watersheds to land use and stream-flow variability.Water Resources Research 33:2579–2590.

    Article  CAS  Google Scholar 

  • Jordan, T. E., D. L. Correll, andD. E. Weller. 2000. Mattawoman creek watershed nutrient and sediment dynamics: Final contract report to Charles County, Maryland. Smithsonian Environmental Research Center, Edgewater, Maryland.

    Google Scholar 

  • Jordan, T. E., J. W. Pierce, andD. L. Correll. 1986. Flux of particulate matter in the tidal marshes and subtidal shallows of the Rhode River estuary.Estuaries 9:310–319.

    Article  Google Scholar 

  • Jordan, T. E. andD. E. Weller. 1996. Human contributions to terrestrial nitrogen flux.Bioscience 46:655–664.

    Article  Google Scholar 

  • Jordan, T. E., D. E. Weller, andD. L. Correll. 2003. Sources of nutrient inputs to the Patuxent River estuary.Estuaries 26: 226–243.

    Article  CAS  Google Scholar 

  • Kellogg, R. L., M. S. Maizel, andD. W. Gross. 1992. Agricultural chemical use and ground water quality: Where are the potential problem areas? U.S. Department of Agriculture. Washington, D.C.

    Google Scholar 

  • Langland, M. J., P. L. Lietman, andS. Hoffman. 1995. Synthesis of nutrient and sediment data for watersheds within the Chesapeake Bay drainage basin. U.S. Geological Survey, Lemoyne, Pennsylvania.

    Google Scholar 

  • Linker, L. C., G. W. Shenk, R. L. Dennis, andJ. S. Sweeney. 1999. Cross-media models of the Chesapeake Bay watershed and airshed. Chesapeake Bay Program Office, Annapolis, Maryland.

    Google Scholar 

  • Liu, Z.-J., D. E. Weller, D. L. Correll, andT. E. Jordan. 2000. Effects of land cover and geology on stream chemistry in watersheds of Chesapeake Bay.Journal of the American Water Resources Association 36:1349–1366.

    Article  CAS  Google Scholar 

  • Lizgarra, J. S. 1999. Nutrient and sediment concentrations, trends, and loads from five subwatersheds in the Patuxent River basin, Maryland, 1986–1996. U.S. Geological Survey, Baltimore, Maryland.

    Google Scholar 

  • Lung, W. 1992. A water quality model for the Patuxent estuary. School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia.

    Google Scholar 

  • Lung, W. S. andS. Bai. 2003. A water quality model for the Patuxent estuary: Current conditions and predictions under changing land-use scenarios.Estuaries 26:267–280.

    Article  CAS  Google Scholar 

  • Maryland Office of Planning (MOP). 1991. Land use/land cover information for Maryland. Maryland Office of Planning, Baltimore, Maryland.

    Google Scholar 

  • Maryland Office of Planning (MOP). 1993. Nonpoint source assessment and accounting system: Final report for the FFY '91 Section 319 grant. Maryland Office of Planning, Baltimore, Maryland.

    Google Scholar 

  • Maryland Office of Planning (MOP). 1995. Development and application of the nonpoint source assessment and accounting system: Final report for the FFY '92 Section 319 grant. Maryland Office of Planning, Baltimore, Maryland.

    Google Scholar 

  • Maryland Office of Planning (MOP). 2000. Methods used to estimate 1997–2020 land use change. Maryland Office of Planning, Baltimore, Maryland.

    Google Scholar 

  • Meentemeyer, V. andE. O. Box. 1987. Scale effects in landscape studies, p. 15–36.In M. G. Turner (ed.), Landscape Heterogeneity and Disturbance, Volume 64. Springer-Verlag, New York.

    Google Scholar 

  • Natural Resources Conservation Service. 1995. Soil survey geographic (SSURGO) database: Data use information. U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  • Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes, and future consequences.Ophelia 41:199–219.

    Google Scholar 

  • Nizeyimana, E., G. W. Petersen, M. C. Anderson, B. M. Evans, J. M. Hamlett, andG. M. Baumer. 1996. Statewide GIS/Census data assessment of nitrogen loadings from septic systems in Pennsylvania.Journal of Environmental Quality 25:346–354.

    CAS  Google Scholar 

  • Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, andW. R. Boynton. 1984. Chesapeake Bay anoxia: Origin, development, and significance.Science 223:22–27.

    Article  CAS  Google Scholar 

  • Orth, R. J. andK. A. Moore. 1983. Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation.Science 222:51–54.

    Article  CAS  Google Scholar 

  • Peterson, B. J., W. M. Wollheim, P. J. Mulholland, J. R. Webster, J. L. Meyer, J. L. Tank, E. Marti, W. B. Bowden, H. M. Valett, A. E. Hershey, W. M. McDowell, W. K. Dodds, S. K. Hamilton, S. Gregory, andD. D. Morall. 2000. Control of nitrogen export from watersheds by headwater streams.Science 292:86–90.

    Article  Google Scholar 

  • Preston, S. D. andJ. W. Brakebill. 1999. Application of spatially referenced regression modeling for evaluation of the total nitrogen loading in the Chesapeake Bay watershed, Water-Resources Investigations Report 99-4054. U.S. Geological Survey, Denver, Colorado.

    Google Scholar 

  • Rabalais, N. N., R. E. Turner, andW. J. Wiseman. 2001. Hypoxia in the Gulf of Mexico.Journal of Environmental Quality 30: 320–329.

    Article  CAS  Google Scholar 

  • SAS Institute, Inc. 1999. SAS/STAT User's Guide, Version 8. SAS Institute, Inc., Cary, North Carolina.

    Google Scholar 

  • Seitzinger, S. P., R. V. Styles, E. W. Boyer, R. B. Alexander, G. Billen, R. W. Howarth, B. Mayer, andN. van Breeman. 2002. Nitrogen retention in rivers: Model development and application to watersheds in the Eastern U.S.A.Biogeochemistry 57/58:199–237.

    Article  CAS  Google Scholar 

  • Smith, R. A., G. E. Schwarz, andR. B. Alexander. 1997. Regional interpretation of water-quality monitoring data.Water Resources Research 33:2781–2798.

    Article  CAS  Google Scholar 

  • Sprague, L. A., M. J. Langland, S. E. Yochum, R. E. Edwards, J. D. Blomquist, S. W. Philips, G. W. Shenk, andS. D. Preston. 2000. Factors affecting nutrient trends in major rivers of the Chesapeake Bay watershed. Water-Resources Investigations Report 00-4218. U.S. Geological Survey. Denver, Colorado.

    Google Scholar 

  • Srinivasan, R., J. G. Arnold, R. S. Muttiah, C. Walker, andP. T. Dyke. 1993. Hydrologic unit model for United States (HU-MUS), p. 454–462.In S. Yang (ed.), Proceedings of Advances in Hydro-science and Engineering, Volume 30. University of Mississippi, Oxford, Mississippi.

    Google Scholar 

  • Tassone, J., D. M. Weller, R. E. Hall, andN. M. Edwards. 1998. Smart growth options for Maryland's tributary strategies. Maryland Office of Planning. Baltimore, Maryland.

    Google Scholar 

  • Turner, M. G. 1989. Landscape ecology: The effect of pattern on process.Annual Review of Ecology and Systematics 20:171–197.

    Article  Google Scholar 

  • Turner, R. E. andN. N. Rabalais. 1991. Changes in Mississippi River water quality this century—Implications for coastal food webs.Bioscience 41:140–147.

    Article  Google Scholar 

  • U.S. Geological Survey. 1999. Land use change in the Chesapeake Bay drainage basin. U.S. Geological Survey, Reston, Virginia.

    Google Scholar 

  • U.S. Geological Survey. 2001. National land cover characterization project. U.S. Geological Survey, Reston, Virginia.

    Google Scholar 

  • Vogelmann, J. E., T. Sohl, andS. M. Howard. 1998a. Regional characterization of land cover using multiple sources of data.Photogrammetric Engineering and Remote Sensing 64:45–67.

    Google Scholar 

  • Vogelmann, J. E., T. Sohl, S. M. Howard, andD. M. Shaw. 1998b. Regional land cover characterization using Landsat Thematic Mapper data and ancillary data sources.Environmental Monitoring and Assessment 51:415–428.

    Article  Google Scholar 

  • Voinov, A. A., H. Voinov, andR. Costanza. 1999. Surface water flow in landscape models: 2. Patuxent watershed case study.Ecological Modelling 119:211–230.

    Article  Google Scholar 

  • Weller, D. E., D. L. Correll, T. E. Jordan, andJ. M. Coffee. 1996. Scale-dependent success in quantifying cropland from satellite-based land cover data.Bulletin of the Ecological Society America 77:474.

    Google Scholar 

  • Weller, D. M. andN. Edwards. 2001. Maryland's changing land use: Past, present, and future. Maryland Department of Planning, Baltimore, Maryland.

    Google Scholar 

  • Wernick, B. G., K. E., Cook, andH. Schreier. 1998. Land use and stream water nitrate-N dynamics in an urban-rural fringe watershed.Journal of the American Water Resources Association 34: 639–650.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Weller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weller, D.E., Jordan, T.E., Correll, D.L. et al. Effects of land-use change on nutrient discharges from the Patuxent River watershed. Estuaries 26, 244–266 (2003). https://doi.org/10.1007/BF02695965

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02695965

Keywords

Navigation