Skip to main content
Log in

The distribution of trace metal ions in bone and tendon

Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The natural trace metal compositions of human bone mineral and demineralized bone were measured by emission spectroscopy and compared with those of the original whole bone and human tendon. Cu, Fe and Zn remained in the collagenous matrix of bone and were found in similar quantities in tendon. It is suggested, therefore, that these ions are chemically bound to the collagen matrix in these tissuesin vivo, and that the binding has a part in their activity. Most of the Pb, Si, Sr, and V in bone remained with the mineral portion, probably as substituted or interstitial ions. Zn is divided between the organic and mineral phases.

Résumé

La composition en éléments métalliques, trouvés à l'état de traces, dans le minéral de l'os humain et dans l'os déminéralisé est mesurée par spectroscopie d'émissions et comparée à celle de l'os original entier et le tendon humain. Le Cu, Fe et Zn restent dans la matrice collagène de l'os et se retrouvent en quantités équivalentes dans le tendon. Il semble donc que ces ions soient liés chimiquement à la matrice collagène de ces tissusin vivo et que cette liaison joue un rôle dans leur activité. La majorité du Pb, Si, Sr, et V de l'os reste dans la fraction minérale, probablement sous la forme d'ions substitués ou interstitiels. Le Zn se répartit entre les phases organiques et minérales.

Zusammenfassung

Die natürliche Zusammensetzung der Spurenelemente im menschlichen Knochemineral und im demineralisierten Knochen wurde mittels Emissionsspektroskopie gemessen und mit jener im ursprünglichen, intakten Knochen und in der menschlichen Sehne verglichen. Cu, Fe und Zn blieben in der Kollagenmatrix des Knochens zurück und wurden in ähnlichen Mengen in der Sehne gefunden. Deshalb wird angenommen, daß diese Ionen in vivo chemisch an die Kollagenmatrix dieser Gewebe gebunden sind und daß diese Bindung einen Anteil an ihrer Aktivität hat. Der größte Teil des Pb, Si, Sr und V des Knochens blieb in der Mineralfraktion, vermutlich als substituierte oder interstitielle Ionen. Zn ist gleichmäßig auf die organische und anorganische Phase verteilt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Becker, R. O., Spadaro, J. A., Berg, E. W.: The trace elements in human bone. J. Bone Jt Surg.50-A, 326–334 (1968).

    Google Scholar 

  • Chvapil, M., Hurych, J.: Control of collagen synthesis. In: International review of connective tissue research (ed. by Hall, D. A.), v. 4. New York: Academic Press 1968.

    Google Scholar 

  • Ellis, E. H.: The fluorescence of bone. Thesis, Syracuse University, 1964.

  • —, Spadaro, J. A., Becker, R. O.: Trace elements in tendon collagen. Clin. Ortho. Rel. Res.65, 195–198 (1969).

    Google Scholar 

  • Fore, H., Morton, R. A.: The manganese in bone. Biochem. J.51, 598–600 (1952).

    PubMed  Google Scholar 

  • Friedman, B., Heiple, K. G., Vessely, J. C., Hanaoka, H.: Ultrastructural investigation of bone induction by osteosarcoma using diffusion chambers. Clin. Ortho. Rel. Res.59, 39–57 (1968).

    Google Scholar 

  • Grobstein, C., Cohen, J.: Collagenase: effect on the morphogenesis of embryonic salivary epithelium in vitro. Science150, 626–628 (1965).

    PubMed  Google Scholar 

  • MacDonald, N. S., Ezmirlian, F., Sapin, P. McArthur, C.: The ultimate site of skeletal deposition of strontium and lead. J. biol. Chem.188, 387–399 (1951).

    Google Scholar 

  • O'Dell, B. L., Elsden, D. F., Thomas, T., Partridge, S. M., Smith, R. H., Palmer, R.: Inhibition of the biosynthesis of cross-links in elastin by a lathyrogen. Nature (Lond.)209, 401–402 (1966).

    Google Scholar 

  • Report of Committee II on permissable dose for internal radiation. Hlth Phys.3, 1–151 (1960).

    Google Scholar 

  • Schiffmann, E., Corcoran, B. A., Martin, G. R.: The role of complexed heavys metals in initiating the mineralization of “elastin” and the precipitation of mineral from solution. Arch. Biochem.115, 87–94 (1966).

    PubMed  Google Scholar 

  • Sobel, A. E., Hanok, A.: Calcification VII; reversible inactivation of calcificationin vitro. J. biol. Chem.197, 669–685 (1952).

    PubMed  Google Scholar 

  • Spadaro, J. A.: Use of the direct current are voltage in determining the carbonate content of bone. App. Spectry.23, 125–128 (1969).

    Google Scholar 

  • Spadaro, J. A. Trace metal ions in bone and collagen-Thesis, Syracuse University (1969b).

  • —, Becker, R. O., Bachman, C. H.: Size-specific metal complesing sites in native collagen. Nature225, 1134–1136 (1970).

    Article  PubMed  Google Scholar 

  • Thurber, D. L. Kulp J. L., Hodges, E., Gast, P. W., Wampler, S. M.: Common strontium content of the human skeleton. Science128, 256–257, 1958.

    PubMed  Google Scholar 

  • Urist, M. R., Dowell, T. A., Hay, P. H. Strates, B. S.: Inductive substrates for bone formation. Clin. Ortho. Rel. Res.59, 59–96 (1968).

    Google Scholar 

  • Williams, J. B., Irvine, J. W.: Preparation of the inorganic matrix of bone. Science119, 771–772 (1954).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by Grant No. AMO 7626, National Institutes of Health, United States Public Health Service and by the Veterans Administration Research Service.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spadaro, J.A., Becker, R.O. & Bachman, C.H. The distribution of trace metal ions in bone and tendon. Calc. Tis Res. 6, 49–54 (1970). https://doi.org/10.1007/BF02196183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02196183

Key words

Navigation