Skip to main content

Simulation Analysis of the Construction Process of a Hybrid Girder Cable-Stayed Bridge with Profiled Towers

  • Conference paper
  • First Online:
Proceedings of the 2023 International Conference on Green Building, Civil Engineering and Smart City (GBCESC 2023)

Abstract

In order to study the mechanical state of the construction process of the hybrid girder cable-stayed bridge with profiled towers, this paper takes a bridge in Foshan as the research background, which is a 200 m main span hybrid girder cable-stayed bridge with 125 m high main towers and a span arrangement of (200 + 68 + 46) m. The research method of finite element simulation analysis is used to calculate the mechanical state of the main bridge structure under load. The results show that: the main tower under permanent action and combined action are maintained in a reasonable range, the structure under permanent action and combined action into the bridge state of the main beam stress, main beam deformation and cable force are located in a reasonable range, for the development of construction plans to provide effective reference value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, K.: Construction control and monitoring analysis of shaped single tower cable-stayed bridges. Urban Roads Bridges Flood Control (07), 212–215+22 (2016)

    Google Scholar 

  2. Lei, L., Kai, L.: Simulation and monitoring of construction process of shaped tower cable-stayed bridge. Build. Mater. World 39(05), 70–74 (2018)

    Google Scholar 

  3. Yang, J., Li, J., Mei, J., Zhou, R., Zhu, D.: Analysis of mechanical properties of shaped towers of asymmetric single-tower hybrid girder cable-stayed bridges in different states. Guangdong Civil Eng. Constr. 29(01), 50–52+60 (2022)

    Google Scholar 

  4. Fei, G., Li, P., Zhu, Y.: Study on the control technology of shaped steel tower alignment of cable-stayed bridges. Spec. Struct. 37(04), 102–106 (2020)

    Google Scholar 

  5. Zhang, S., Fang, S., Hao, D.: Finite element analysis of the mechanical behavior of steel-hybrid combination in hybrid girder cable-stayed bridges. Eng. Constr. 36(05), 1398–1403 (2022)

    Google Scholar 

  6. Xu, Y.F., Han, D.J., Liang, L.N.: Finite element simulation analysis of the Gaozan Bridge. China Port Harbor Constr. 03, 9–14 (2008)

    Google Scholar 

  7. JTG D60-2015: General specification for the design of highway bridges and culverts

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghui Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, T., Yang, J., Zhu, D., Xu, Y. (2024). Simulation Analysis of the Construction Process of a Hybrid Girder Cable-Stayed Bridge with Profiled Towers. In: Guo, W., Qian, K., Tang, H., Gong, L. (eds) Proceedings of the 2023 International Conference on Green Building, Civil Engineering and Smart City. GBCESC 2023. Lecture Notes in Civil Engineering, vol 328. Springer, Singapore. https://doi.org/10.1007/978-981-99-9947-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9947-7_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9946-0

  • Online ISBN: 978-981-99-9947-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics