Skip to main content

Introduction to Nanocarbon

  • Chapter
  • First Online:
NanoCarbon: A Wonder Material for Energy Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 108 Accesses

Abstract

The field of nanomaterials has received much attention in recent years for its cutting-edge applications in areas such as energy, environmental, and life sciences. Owing to their distinct physio-chemical characteristics, nanocarbon with various dimensions such as 0D fullerenes and carbon-dots, 1D graphene nanoribbons and carbon nanotubes, 2D graphene oxides and graphene, and 3D nanodiamonds have gained a great deal of interest for applications in photovoltaics, optoelectronics, and electronics and as well as bio-imaging, sensing, and therapeutics. More interestingly graphene and CNTs offer unique structural properties like flexibility, mechanical stability, and electrical and thermal stability which create a revolution in the field of energy storage and sensing applications. This chapter systematically summarizes the synthesis of nanocarbons with distinct morphology and discusses how the synthesis methods influence the structural properties of nanocarbons. Further, the challenges in the synthesis methods and future perspectives of nanocarbons also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perathoner, S., Centi, G.: Advanced nanocarbon materials for future energy applications. In: Emerging Materials for Energy Conversion and Storage, pp. 305–325. Elsevier (2018)

    Google Scholar 

  2. Su, D.S., Perathoner, S., Centi, G.: Nanocarbons for the development of advanced catalysts. Chem. Rev. 113, 5782–5816 (2013)

    Google Scholar 

  3. Itami, K., Maekawa, T.: Molecular nanocarbon science: present and future. Nano Lett. 20, 4718–4720 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. Dai, L., Chang, D., Baek, J.B., Lu, W.: Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130–1166 (2012)

    Google Scholar 

  5. Su, D.S., Centi, G.: A perspective on carbon materials for future energy application. J. Energy Chem. 22, 151–173 (2013)

    Article  CAS  Google Scholar 

  6. Wang, J., Hu, Z., Xu, J., Zhao, Y.: Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Mater. 6, 84–84 (2014)

    Article  Google Scholar 

  7. Lai, J., Niu, W., Luque, R., Xu, G.: Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10, 240–267 (2015)

    Article  CAS  Google Scholar 

  8. Storti, E., Lojka, M., Lencová, S., Hubálková, J., Jankovský, O., Aneziris, C.G.: Synthesis and characterization of graphene nanoplatelets-containing fibers by electrospinning. Open Ceram. 15, 100395–100404 (2023)

    Article  CAS  Google Scholar 

  9. Youqi, Z., Tai, C., Chuanbao, C., Xilan, M., Xingyan, X., Yadong, L.: A general synthetic strategy to monolayer graphene. Nano Res. 11, 3088–3095 (2018)

    Article  Google Scholar 

  10. Santhiran, A., Iyngaran, P., Abiman, P., Kuganathan, N.: Graphene synthesis and its recent advances in applications—a review. C 7, 76–89 (2021)

    Google Scholar 

  11. Dimovski, S., Nikitin, A., Ye, H., Gogotsi, Y.: Synthesis of graphite by chlorination of iron carbide at moderate temperatures. J. Mater. Chem. 14, 238–243 (2004)

    Article  CAS  Google Scholar 

  12. Escobar, M., Moreno, M., Candal, R.J., Marchi, M.C., Caso, A., Polosecki, P.I., Goyanes, S.: Synthesis of carbon nanotubes by CVD: effect of acetylene pressure on nanotubes characteristics. Appl. Surf. Sci. 254, 251–256 (2007)

    Google Scholar 

  13. Asfaw, H.D., Tai, C.W., Valvo, M., Younesi, R.: Facile synthesis of hard carbon microspheres from polyphenols for sodium-ion batteries: insight into local structure and interfacial kinetics. Mater. Today Energy 18, 100505 (2020)

    Article  CAS  Google Scholar 

  14. Dahbi, M., Kiso, M., Kubota, K., Horiba, T., Chafik, T., Hida, K., Komaba, S.: Synthesis of hard carbon from argan shells for Na-ion batteries. J. Mater. Chem. A 5, 9917–9928 (2017)

    Article  CAS  Google Scholar 

  15. Wang, H., Yu, Q., Qu, J.: Synthesis of phosphorus-doped soft carbon as anode materials for lithium and sodium ion batteries. Russ. J. Phys. Chem. A 91, 1152–1155 (2017)

    Google Scholar 

  16. Paukov, M., Kramberger, C., Begichev, I., Kharlamova, M., Burdanova, M.: Functionalized fullerenes and their applications in electrochemistry, solar cells, and nanoelectronics. Materials 16, 1276–1297 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhen, Z., Zhu, H.: Structure and properties of graphene. In: Graphene, pp. 1–12. Academic Press (2018)

    Google Scholar 

  18. Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017)

    Article  CAS  Google Scholar 

  19. Djurišić, A.B., Li, E.H.: Optical properties of graphite. J. Appl. Phys. 85, 404–7410 (1999)

    Article  Google Scholar 

  20. Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka, K., Yamashita, S., Yamabe, H., Yamabe, T.: Electronic properties of one-dimensional graphite family. Synth. Met. 17, 143–148 (1987)

    Article  CAS  Google Scholar 

  22. Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., Bhowmick, A.K.: A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36, 638–670 (2011)

    Google Scholar 

  23. Odom, T.W., Huang, J.L., Kim, P., Lieber, C.M.: Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B 104, 2794–2809 (2000)

    Article  CAS  Google Scholar 

  24. Ajayan, P.M., Zhou, O.Z.: Applications of carbon nanotubes. Carbon nanotubes: synthesis, structure, properties, and applications. 80, 391–425 (2001)

    Google Scholar 

  25. Mishra, R., Panigrahy, S., Barman, S.: Single-source-derived nitrogen-doped soft carbons for application as anode for sodium-ion storage. Energy Fuels 36, 6483–6491 (2022)

    Article  CAS  Google Scholar 

  26. Mittal, U., Djuandhi, L., Sharma, N., Andersen, H.L.: Structure and function of hard carbon negative electrodes for sodium-ion batteries. J. Phys. Energy 4, 042001–042026 (2022)

    Article  Google Scholar 

  27. Greil, P.: Perspectives of nano-carbon based engineering materials. Adv. Funct. Mater. 17, 124–137 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

The author C. Nithya wishes to thank the DST-Science and Engineering Research board, Government of India for SERB-POWER Grant (SPG/2021/004543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekaran Nithya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhanushree, S., Nithya, C. (2024). Introduction to Nanocarbon. In: Gupta, R.K. (eds) NanoCarbon: A Wonder Material for Energy Applications. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-9935-4_1

Download citation

Publish with us

Policies and ethics