Skip to main content

UAV-D2D Assisted Latency Minimization and Load Balancing in Mobile Edge Computing with Deep Reinforcement Learning

  • Conference paper
  • First Online:
Green, Pervasive, and Cloud Computing (GPC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14504))

Included in the following conference series:

  • 127 Accesses

Abstract

Now Unmanned Aerial Vehicle (UAV) with Mobile Edge Computing (MEC) severs and Device-to-Device (D2D) communications provide offload computing services for User Devices (UDs). However, the UAV has relatively high transmission latency. And D2D lacks the necessary flexibility. In this paper, we introduce a novel MEC system that utilizes the collaborative advantages of flexible movement of UAV and the low latency transmission of D2D communication to process tasks from UDs. We formulate an optimization problem focused on minimizing the tasks transmission and execution delay of UDs. The problem involves joint optimization of user scheduling, UAV trajectory, and resource allocation of Virtual Machines (VMs) on the MEC server. To tackle this non-convex problem, we propose a Deep Reinforcement Learning (DRL) algorithm with Deep Deterministic Policy Gradient (DDPG). Through simulation results, we demonstrate that DDPG reduces the latency by 41% compared to Deep Q-Network (DQN) and Actor-Critic (AC) algorithm. Our collaborative UAV-D2D model has 16% and 32% lower latency than when only the UAV or D2D works alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui, G., He, Q., Chen, F., Zhang, Y., Jin, H., Yang, Y.: Interference-aware Game-Theoretic device allocation for mobile edge computing. IEEE Trans. Mob. Comput. 21(11), 4001–4012 (2022)

    Google Scholar 

  2. Zhang, J., Wang, Z.-J., Wang, K., Guo, S., Wang, B., Guo, M.: Improving power efficiency for online video streaming service: a self-adaptive approach. IEEE Trans. Sustain. Comput. 4(3), 308–313 (2019)

    Google Scholar 

  3. Tiankui Zhang, Y.X., Loo, J., Yang, D., Xiao, L.: Joint computation and communication design for UAV-assisted mobile edge computing in IoT. IEEE Trans. Ind. Inf. 16(8), 5505–5516 (2020)

    Google Scholar 

  4. Li, X., Feng, W., Chen, Y., Wang, C., Ge, N.: UAV-Enabled accompanying coverage for hybrid satellite-UAV-terrestrial maritime communications. In: Proceedings of 28th Wireless and Optical Communications Conference, pp. 1–5 (2019)

    Google Scholar 

  5. Wang, Z., Duan, L., Zhang, R.: Adaptive deployment for UAV-aided communication networks. IEEE Trans. Wirel. Commun. 18(9), 4531–4543 (2019)

    Google Scholar 

  6. Chatzopoulos, D., Bermejo, C., Haq, E.U., Li, Y., Hui, P.: D2D task offloading: A dataset-based Q and A. IEEE Commun. Mag. 57(2), 102–107 (2019)

    Google Scholar 

  7. Cheng, Y., Liang, C., Chen, Q., Yu, R.: Energy-efficient D2D-assisted computation offloading in NOMA-Enabled cognitive networks. IEEE Trans. Veh. Technol. 70(12), 13441–13446 (2021)

    Google Scholar 

  8. Liang, Z., Liu, Y., Lok, T., Huang, K.: Multiuser computation offloading and downloading for edge computing with virtualization. IEEE Trans. Wireless Commun. 18(9), 4298–4311 (2019)

    Google Scholar 

  9. Bozorgchenani, A., Mashhadi, F., Tarchi, D., Salinas Monroy, S.A.: Multi-objective computation sharing in energy and delay constrained mobile edge computing environments. IEEE Trans. Mob. Comput. 20(10), 2992–3005 (2021)

    Google Scholar 

  10. Li, Y., Wang, X., Gan, X., Jin, H., Fu, L., Wang, X.: Learning-Aided computation offloading for trusted collaborative mobile edge computing. IEEE Trans. Mob. Comput. 19(12), 2833–2849 (2020)

    Google Scholar 

  11. Asim, M., Mashwani, W.K., Shah, H., Belhaouari, S.B.: A Load-Balanced and Energy-Efficient navigation scheme for UAV-Mounted mobile edge computing. Soft Computing, pp. 1–14. Springer, Berlin, Germany (2021)

    Google Scholar 

  12. Wang, Z., Rong, H., Jiang, H., Xiao, Z., Zeng, F.: An evolutionary trajectory planning algorithm for multi-UAV-assisted MEC system. IEEE Trans. Netw. Sci. Eng. 9(5), 3659–3674 (2022)

    Google Scholar 

  13. Saleem, U., Liu, Y., Jangsher, S., Tao, X., Li, Y.: Latency minimization for D2D-Enabled partial computation offloading in mobile edge computing. IEEE Trans. Veh. Technol. 69(4), 4472–4486 (2020)

    Google Scholar 

  14. Dai, X., et al.: Task Co-Offloading for D2D-Assisted mobile edge computing in industrial Internet of Things. IEEE Trans. Ind. Inf. 19(1), 480–490 (2023)

    Google Scholar 

  15. Pu, X., Liu, L., Mei, Y., Sivathanu, S., Koh, Y., Pu, C.: Understanding performance interference of I/O workload in virtualized cloud environments. In: Proc. IEEE 3rd International Conference on Cloud Computing, pp. 51–58 (2010)

    Google Scholar 

  16. Koushik, A.M., Hu, F., Kumar, S.: Deep Q-learning-based node positioning for throughput-optimal communications in dynamic UAV swarm network. IEEE Trans. Cogn. Commun. Netw. 5(3), 554–566 (2019)

    Article  Google Scholar 

  17. Ding, R., Gao, F., Shen, X.S.: 3D UAV trajectory design and frequency band allocation for energy efficient and fair communication: a deep reinforcement learning approach. IEEE Trans. Wireless Commun. 19(12), 7796–7809 (2020)

    Article  Google Scholar 

  18. Liu, Y., Yan, J., Zhao, X.: Deep reinforcement learning based latency minimization for mobile edge computing with virtualization in maritime UAV communication network. IEEE Trans. Veh. Technol. 71(4), 4225–4236 (2022)

    Article  Google Scholar 

  19. Orhean, A.I., Pop, F., Raicu, I.: New scheduling approach using reinforcement learning for heterogeneous distributed systems. J Parallel Distrib Comput. 117, 292–302 (2018)

    Article  Google Scholar 

  20. Mnih, V., Kavukcuoglu, K., Silver, D.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  21. Cheng, N., et al.: Space/Aerial-assisted computing offloading for IoT applications: a learning-based approach. IEEE J. Sel. Areas Commun. 37(5), 1117–1129 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Ningbo Natural Science Foundation under Grant 2021J070, in part by the Zhejiang Natural Science Foundation under Grant LY20F010004, and National Natural Science Foundation of China under Grant 61801254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Q., Qu, L. (2024). UAV-D2D Assisted Latency Minimization and Load Balancing in Mobile Edge Computing with Deep Reinforcement Learning. In: Jin, H., Yu, Z., Yu, C., Zhou, X., Lu, Z., Song, X. (eds) Green, Pervasive, and Cloud Computing. GPC 2023. Lecture Notes in Computer Science, vol 14504. Springer, Singapore. https://doi.org/10.1007/978-981-99-9896-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9896-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9895-1

  • Online ISBN: 978-981-99-9896-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics