Skip to main content

Accurate Estimation of Amplitude, Phase, and Frequency of a Sinusoidal Signal Contaminated with Harmonics and DC Decaying Components

  • Conference paper
  • First Online:
Emerging Technologies in Electrical Engineering for Reliable Green Intelligence (ICSTACE 2023)

Abstract

This paper proposes the modified Newton–Raphson method to estimate a sinusoidal signal's amplitude, phase, and frequency polluted with harmonics and decaying DC components. Discrete Fourier Transform (DFT) can only determine harmonics at a specific frequency. A simple method is proposed to filter DC offset (DCO) from the main signal and prepare pure sinusoidal input. This pre-processing method prepares a signal without DCO for accurate phasor estimation in DFT, widely used for frequency estimation in protection systems. The effectiveness of the proposed method for static and dynamic signals in the presence of noise was studied. The simulation studies performed in this work found that the performance of the proposed method is fully satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen CS, Liu CW, Jiang JA (2006) Application of combined adaptive fourier filtering technique and fault detector to fast distance protection. IEEE Trans Power Del 21(2):619–626

    Article  Google Scholar 

  2. Gabriel Benmouyal G (1995) Removal of DC-offset in current waveforms using digital mimic filtering. IEEE Trans Power Del 10(2):621–630

    Google Scholar 

  3. Guo Y, Kezunovic M, Chen D (2003) Simplified algorithms for removal of the effect of exponentially decaying dc-offset on the Fourier algorithm. IEEE Trans Power Del 18(3):711–717

    Article  Google Scholar 

  4. Sidhu TS, Zhang X, Albas F, Sachdev MS (2003) Discrete-Fourier transform-based technique for removal of decaying DC offset from phasor estimates. Proc Inst Electr Eng 150(6):745–752

    Google Scholar 

  5. Yu CS (2006) A discrete Fourier transform-based adaptive mimic phasor estimator for distance relaying applications. IEEE Trans Power Del 21(4):1836–1846

    Article  Google Scholar 

  6. Sidhu TS, Zhang X, Balamourougan V (2005) A new half-cycle phasor estimation algorithm. IEEE Trans Power Del 20(2, pt. 2):1299–1305

    Google Scholar 

  7. Yu SL, Gu JC (2001) Removal of decaying dc in current and voltage signals using a modified Fourier filter algorithm. IEEE Trans Power Del 16(3):372–379

    Article  Google Scholar 

  8. Ashrafi Niaki SH, Kazemi Karegar H (2009) An analytic method for removal of decaying DC component from phasor estimates. Iranian J Electr Comput Eng 12(1, 2):33–40

    Google Scholar 

  9. Tajdinian M, Jahromi MZ, Mohseni K, Kouhsari SM (2016) An analytical approach for removal of decaying DC component considering frequency deviation. Electr Power Syst Res 130:208–219

    Google Scholar 

  10. Yu H et al (2022) A phasor estimation algorithm robust to decaying DC component. IEEE Trans Power Syst 37(2):860–870

    Google Scholar 

  11. Chen L et al (2020) Harmonic phasor estimator for P class phasor measurement units. IEEE Trans Instrum Meas 69(4):1556–1565

    Article  Google Scholar 

  12. Hajizadeh H et al (2021) An analytical fast decaying DC mitigation method for digital relaying applications. IEEE Trans Power Deliv 36(6):3529–3527

    Google Scholar 

  13. Afrandideh S, Haghjoo F (2022) A DFT-based phasor estimation method robust to primary and secondary decaying DC components. Electr Power Syst Res 208(107907):1–13

    Google Scholar 

  14. Yu H et al (2022) A phasor estimation algorithm robust to decaying DC component. IEEE Trans Power Deliv 37(2):860–870

    Google Scholar 

  15. Amirat Y et al (2020) Phasor estimation for grid power monitoring: least square versus linear kalman filter. Energies 13(10):1–15

    Google Scholar 

  16. Jafarpisheh B et al (2021) A robust algorithm for real-time phasor and frequency estimation under diverse system conditions. Energies 14(21):1–20

    Article  Google Scholar 

  17. Bernard L et al (2020) Harmonic and interharmonic phasor estimation using matrix pencil method for phasor measurement units. IEEE Trans Power Deliv 21(2):945–954

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Kumar .

Editor information

Editors and Affiliations

Appendix

Appendix

Due to space limitation derivation only some of the Jacobian coefficients of Eq. (11) are presented here:

$$ \begin{gathered} \frac{{\partial^{2} {\text{F}}}}{{\partial \omega^{2} }} = \sum\limits_{k = 1}^{N} {\left\{ {2t_{{\text{k}}}^{2} \left[ {\sum\limits_{i = 1}^{7} {{\text{i}}^{2} {\text{A}}_{{\text{i}}} \sin \left( {{\text{i}}\omega {\text{t}}_{{\text{k}}} + \phi_{{\text{i}}} } \right)} } \right]} \right.} \hfill \\ \left. {\left[ {{\text{Y}}_{{\text{k}}} - {\text{A}}_{{{\text{DC}}}}^{{{\text{e}} - \left( {\frac{{{\text{t}}_{{\text{k}}} }}{\tau }} \right)}} - \sum\limits_{i = 1}^{7} {{\text{A}}_{{\text{i}}} \sin \left( {{\text{i}}\omega {\text{t}}_{k} + \phi_{{\text{i}}} } \right)} } \right] + \sum\limits_{i = 1}^{7} {2\left( {{\text{iA}}_{{\text{i}}} {\text{t}}_{{\text{k}}} } \right)^{2} \left[ {\cos \left( {{\text{j}}\omega {\text{t}}_{{\text{k}}} + \phi_{{\text{j}}} } \right)} \right]^{2} } } \right\} \hfill \\ \end{gathered} $$
(27)
$$ \begin{gathered} \left[ {\frac{{\partial ^{2} F}}{{\partial A_{l} \partial \omega }}} \right]_{{1 \times 7}} = \sum\limits_{{k = 1}}^{N} 2 \left[ {\sum\limits_{{i = 1}}^{7} {ji} t_{k} \cos \left( {i\omega t_{k} + \phi _{i} } \right)\cos \left( {j\omega t_{k} + \phi _{j} } \right)} \right] \hfill \\ - 2t_{k} j\cos \left( {j\omega t_{k} + \phi _{j} } \right)\left[ {Y - A_{{DC}} e^{{ - \left( {\frac{{t_{k} }}{\tau }} \right)}} - \sum\limits_{{i = 1}}^{7} {A_{i} } \sin \left( {i\omega t_{k} + \phi _{i} } \right)} \right];j = 1,2,\ldots 7 \hfill \\ \end{gathered} $$
(28)
$$ \begin{gathered} \frac{{\partial ^{2} {\text{F}}}}{{\partial \omega \partial \phi _{{\text{l}}} }} = \sum\limits_{{{\text{k}} = 1}}^{{\text{N}}} {\left\{ {2\left[ {\sum\limits_{{{\text{i}} = 1}}^{7} {\text{i}} {\text{t}}_{{\text{k}}} {\text{A}}_{{\text{i}}} {\text{cos}}\left( {{\text{i}}\omega {\text{t}}_{{\text{k}}} + \phi _{{\text{i}}} } \right){\text{A}}_{{\text{l}}} {\text{cos}}\left( {{\text{l}}\omega {\text{t}}_{{\text{k}}} + \phi _{{\text{l}}} } \right)} \right]} \right.} \hfill \\ \left. { + 2{\text{lA}}_{{\text{l}}} {\text{t}}_{{\text{k}}} {\text{sin}}\left( {{\text{l}}\omega {\text{t}}_{{\text{k}}} + \phi _{{\text{l}}} } \right)\left[ {{\text{Y}} - {\text{A}}_{{{\text{DC}}}} {\text{e}}^{{ - \left( {\frac{{{\text{t}}_{{\text{k}}} }}{\tau }} \right)}} - \sum\limits_{{{\text{i}} = 1}}^{7} {{\text{A}}_{{\text{i}}} } {\text{sin}}\left( {{\text{i}}\omega {\text{t}}_{{\text{k}}} + \phi _{{\text{i}}} } \right)} \right]} \right\};{\text{i}} = 1,2,\ldots 7 \hfill \\ \end{gathered} $$
(29)
$$ \left[ {\frac{{\partial ^{2} {\text{F}}}}{{\partial \phi _{{\text{i}}} \partial \phi _{{\text{j}}} }}} \right]_{{7 \times 7}} = \sum\limits_{{{\text{k}} = 1}}^{{\text{N}}} 2 {\text{A}}_{{\text{i}}} {\text{A}}_{{\text{j}}} {\text{cos}}\left( {{\text{i}}\omega {\text{t}}_{{\text{k}}} + \phi _{{\text{i}}} } \right){\text{cos}}\left( {{\text{j}}\omega {\text{t}}_{{\text{k}}} + \phi _{{\text{j}}} } \right){\text{i}}\,{\text{and}}\,j = 1,2, \ldots , 7 $$
(30)
$$\frac{{\partial }^{2}{\text{F}}}{\partial {\upomega \partial {\text{A}}}_{{\text{DC}}}}= \sum_{{\text{k}}=1}^{{\text{N}}}\left\{2 {{\text{t}}}_{{\text{k}}} {{\text{e}}}^{- \left(\frac{{{\text{t}}}_{{\text{k}}}}{\uptau }\right)}\left[\sum_{{\text{i}}=1}^{7}{{\text{iA}}}_{{\text{i}}}\mathrm{cos }\left(\mathrm{i\omega }{{\text{t}}}_{{\text{k}}}+{\upphi }_{{\text{i}}}\right)\right] \right\}$$
(31)
$$\frac{{\partial }^{2}{\text{F}}}{\partial\upomega \partial\uptau }= \sum_{{\text{k}}=1}^{{\text{N}}}\left\{2 {{\text{t}}}_{{\text{k}}} {{\text{e}}}^{- \left(\frac{{{\text{t}}}_{{\text{k}}}}{\uptau }\right)}\left(\frac{{{\text{t}}}_{{\text{k}}}}{{\uptau }^{2}}\right)\left[\sum_{{\text{i}}=1}^{7}{{\text{iA}}}_{{\text{i}}}\mathrm{cos }\left(\mathrm{i\omega }{{\text{t}}}_{{\text{k}}}+{\upphi }_{{\text{i}}}\right)\right]\right\}$$
(32)
$$\frac{{\partial }^{2}{\text{F}}}{{\partial {\text{A}}}_{{\text{i}}}\partial\uptau }=\sum_{{\text{k}}=1}^{{\text{N}}}2 {{\text{A}}}_{{\text{DC}}} {{\text{e}}}^{- \left(\frac{{{\text{t}}}_{{\text{k}}}}{\uptau }\right)}\left(\frac{{{\text{t}}}_{{\text{k}}}}{{\uptau }^{2}}\right)\mathrm{ sin}\left(\mathrm{i\omega }{{\text{t}}}_{{\text{k}}}+{\upphi }_{{\text{i}}}\right);\mathrm{i }=1, 2, \dots ..7$$
(33)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R., Tripathy, M. (2024). Accurate Estimation of Amplitude, Phase, and Frequency of a Sinusoidal Signal Contaminated with Harmonics and DC Decaying Components. In: Mahajan, V., Chowdhury, A., Singh, S.N., Shahidehpour, M. (eds) Emerging Technologies in Electrical Engineering for Reliable Green Intelligence. ICSTACE 2023. Lecture Notes in Electrical Engineering, vol 1117. Springer, Singapore. https://doi.org/10.1007/978-981-99-9235-5_24

Download citation

Publish with us

Policies and ethics