Skip to main content

Ultra-Gain Two-Input Two-Output DC–DC Converter for Electric Vehicle Application

  • Conference paper
  • First Online:
Emerging Technologies in Electrical Engineering for Reliable Green Intelligence (ICSTACE 2023)

Abstract

Electric vehicles are popular due to savings in fuel cost, environment, and climatic changes. In this paper, a two-stage ultra-gain converter is proposed to achieve high-output voltage in two different ports with inductor–capacitor 2-diodes (LC2D) configuration. The inductor and capacitor in LC2D configuration are used to improve the current and voltage, respectively, while the diode protects the reverse flow of current. The switches are worked at different duty ratios to attain high gain voltage. This converter is designed for the continuous mode of operation, which generates 250 W and 1 kW outputs at two ports and achieves 94.2% efficiency. The presentation of the suggested converter is consumed through simulation and implemented in the experimental platform. The output waveforms are presented under static conditions for the proposed converter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy KJ, Natarajan S (2018) Energy sources and multi-input DC-DC converters used in hybrid electric vehicle applications—A review. Int J Hydrog Energy 43(36):17387–17408

    Google Scholar 

  2. Mohseni P, Hosseini SH, Sabahi M, Jalilzadeh T, Maalandish M (2019) A new high step-up multi-input multi-output DC–DC converter. IEEE Trans Ind Electron 66(7):5197–5208. https://doi.org/10.1109/TIE.2018.2868281

    Article  Google Scholar 

  3. Akar F, Tavlasoglu Y, Ugur E, Vural B, Aksoy I (2016) A bidirectional nonisolated multi-input DC–DC converter for hybrid energy storage systems in electric vehicles. IEEE Trans Veh Technol 65(10):7944–7955

    Article  Google Scholar 

  4. Ramesh P, Gouda PK, Rameshbabu A, Ramanathan G, Bharatiraja C (2022) An isolated multi-port bidirectional DC-DC converter for EV applications. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2022.08.047

  5. Azizi M, Mohamadian M, Beiranvand R (2016) A New family of multi-input converters based on three switches leg. IEEE Trans Ind Electron 63(11):6812–6822. https://doi.org/10.1109/TIE.2016.2581765

    Article  Google Scholar 

  6. Dusmez S, Li X, Akin B (2016) A new multiinput three-level DC/DC converter. IEEE Trans Power Electron 31(2):1230–1240. https://doi.org/10.1109/TPEL.2015.2424246

    Article  Google Scholar 

  7. Kardan F, Alizadeh R, Banaei MR (2017) A new three input DC/DC converter for hybrid PV/FC/battery applications. IEEE J Emerg Sel Top Power Electron 5(4):1771–1778. https://doi.org/10.1109/JESTPE.2017.2731816

    Article  Google Scholar 

  8. Jasour AMZ, Khazraei M, Rahmati A (2008) Design of a MIMO controller for a multimodul DC–DC converter based on particle swarm optimized neural network. In: 2008 IEEE 2nd international power and energy conference, pp 224–230. https://doi.org/10.1109/PECON.2008.4762475

  9. Faridpak B, Farrokhifar M, Nasiri M, Alahyari A, Sadoogi N (2021) Developing a super-lift luo-converter with integration of buck converters for electric vehicle applications. CSEE J Power Energy Syst 7(4):811–820. https://doi.org/10.17775/CSEEJPES.2020.01880

    Article  Google Scholar 

  10. Salimi M, Radmand F, Firouz MH (2021) Dynamic modeling and closed-loop control of hybrid grid-connected renewable energy system with multi-input multi-output controller. J Modern Power Syst Clean Energy 9(1):94–103. https://doi.org/10.35833/MPCE.2018.000353

    Article  Google Scholar 

  11. Faraji R, Farzanehfard H, Kampitsis G, Mattavelli M, Matioli E, Esteki M (2020) Fully soft-switched high step-up nonisolated three-port DC–DC converter using GaN HEMTs. IEEE Trans Ind Electron 67(10):8371–8380. https://doi.org/10.1109/TIE.2019.2944068

    Article  Google Scholar 

  12. Danyali S, Hosseini SH, Gharehpetian GB (2014) New extendable single-stage multi-input DC–DC/AC boost converter. IEEE Trans Power Electron 29(2):775–788. https://doi.org/10.1109/TPEL.2013.2256468

    Article  Google Scholar 

  13. Banaei MR, Ardi H, Alizadeh R, Farakhor A (2014) Non-isolated multi-input-single-output DC/DC converter for photovoltaic power generation systems. IET Power Electron 7(11):2806–2816

    Article  Google Scholar 

  14. Yang D, Yang M, Ruan X (2012) One-cycle control for a double-input DC/DC converter. IEEE Trans Power Electron 27(11):4646–4655. https://doi.org/10.1109/TPEL.2011.2164582

    Article  Google Scholar 

  15. Ramanathan G, Gouda P, Bharatiraja C, Srikar RS, Tej DS (2022) Design of single-inductor double-input double-output DC–DC converter for electric vehicle charger. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2022.07.328

  16. Chen G, Liu Y, Qing X, Ma M, Lin Z (2021) Principle and topology derivation of single-inductor multi-input multi-output DC–DC converters. IEEE Trans Ind Electron 68(1):25–36. https://doi.org/10.1109/TIE.2020.2965490

    Article  Google Scholar 

  17. Jabbari M, Dorcheh MS (2018) Resonant multi-input/multi-output/bidirectional ZCS step-down DC–DC converter with systematic synthesis for point-to-point power routing. IEEE Trans Power Electron 33(7):6024–6032

    Article  Google Scholar 

  18. Yalamanchili KP, Ferdowsi M (2005) Review of multiple input DC–DC converters for electric and hybrid vehicles. IEEE Veh Power Propul Conf 2005:160–163. https://doi.org/10.1109/VPPC.2005.1554613

    Article  Google Scholar 

  19. Li XL, Dong Z, Tse CK, Lu DD-C (2020) Single-inductor multi-input multi-output DC–DC converter with high flexibility and simple control. IEEE Trans Power Electron 35(12):13104–13114. https://doi.org/10.1109/TPEL.2020.2991353

    Article  Google Scholar 

  20. Faraji R, Ding L, Rahimi T, Kheshti M, Islam MR (2021) Soft-switched three-port DC-DC converter with simple auxiliary circuit. IEEE Access 9:66738–66750. https://doi.org/10.1109/ACCESS.2021.3076183

    Article  Google Scholar 

  21. Shan Z, Ding X, Jatskevich J, Tse CK (2021)Synthesis of multi-input multi-output DC/DC converters without energy buffer stages. IEEE Trans Circ Syst II: Express Briefs 68(2):712–716. https://doi.org/10.1109/TCSII.2020.3015388

Download references

Acknowledgements

This work is supported by the Promotion of University Research and Scientific Excellence (PURSE), Department of Science and Technology (DST)—Project File name: SR/PURSE/2021/65 Dated; 25-03-2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bharatiraja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramanathan, G., Bharatiraja, C. (2024). Ultra-Gain Two-Input Two-Output DC–DC Converter for Electric Vehicle Application. In: Mahajan, V., Chowdhury, A., Singh, S.N., Shahidehpour, M. (eds) Emerging Technologies in Electrical Engineering for Reliable Green Intelligence. ICSTACE 2023. Lecture Notes in Electrical Engineering, vol 1117. Springer, Singapore. https://doi.org/10.1007/978-981-99-9235-5_12

Download citation

Publish with us

Policies and ethics