Skip to main content

Plasma-Based CO2 Conversion

  • Chapter
  • First Online:
Advances in CO2 Utilization

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 244 Accesses

Abstract

This chapter discusses the applications of plasma and plasma catalysis for CO2 conversion. After a general introduction on plasma technology and why it is interesting for CO2 conversion, we briefly explain the most common plasma reactor types used for this application. Subsequently, we present the state-of-the-art on plasma-based CO2 conversion including dry reforming of methane (CH4) (DRM) in these different types of plasma reactors. This will be followed by the state-of-the-art on plasma catalysis for CO2 conversion, including CO2 splitting, CO2 hydrogenation, DRM, and CO2 reduction with water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bogaerts A, Neyts E, Gijbels R, Van der Mullen J (2002) Gas discharge plasmas and their applications. Spectrochim Acta Part B 57:609–658

    Article  Google Scholar 

  2. Snoeckx R, Bogaerts A (2017) Plasma technology—a novel solution for CO2 conversion? Chem Soc Rev 46:5805–5863

    Article  CAS  PubMed  Google Scholar 

  3. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma P 23:1–46

    Google Scholar 

  4. Van Laer K, Bogaerts A (2015) Fluid modelling of a packed bed dielectric barrier discharge plasma reactor. Plasma Sources Sci Technol 25:015002

    Article  Google Scholar 

  5. Michielsen I et al (2017) CO2 dissociation in a packed bed DBD reactor: first steps towards a better understanding of plasma catalysis. Chem Eng J 326:477–488

    Article  CAS  Google Scholar 

  6. Bogaerts A, Neyts EC (2018) Plasma technology: an emerging technology for energy storage. ACS Energy Lett 3:1013–1027

    Article  CAS  Google Scholar 

  7. Azizov RI et al. Akademiia Nauk SSSR Doklady, pp 94–98

    Google Scholar 

  8. Berthelot A, Bogaerts A (2017) Modeling of CO2 splitting in a microwave plasma: how to improve the conversion and energy efficiency. J Phys Chem C 121:8236–8251

    Article  CAS  Google Scholar 

  9. Wolf AJ, Righart TW, Peeters F, Bongers W, Van De Sanden M (2020) Implications of thermo-chemical instability on the contracted modes in CO2 microwave plasmas. Plasma Sources Sci Technol 29:025005

    Article  CAS  Google Scholar 

  10. den Harder N et al (2017) Homogeneous CO2 conversion by microwave plasma: wave propagation and diagnostics. Plasma Processes Polym 14:1600120

    Article  Google Scholar 

  11. D’Isa F, Carbone E, Hecimovic A, Fantz U (2020) Performance analysis of a 2.45 GHz microwave plasma torch for CO2 decomposition in gas swirl configuration. Plasma Sources Sci Technol 29:105009

    Google Scholar 

  12. van de Steeg A et al (2021) Redefining the microwave plasma-mediated CO2 reduction efficiency limit: the role of O-CO2 association. ACS Energy Lett 6:2876–2881

    Article  Google Scholar 

  13. van den Bekerom DC et al (2019) The importance of thermal dissociation in CO2 microwave discharges investigated by power pulsing and rotational Raman scattering. Plasma Sources Sci Technol 28:055015

    Article  Google Scholar 

  14. van de Steeg A et al (2022) The chemical origins of plasma contraction and thermalization in CO2 microwave discharges. J Phys Chem Lett 13:1203–1208

    Article  PubMed  Google Scholar 

  15. Wolf A et al (2019) Characterization of CO2 microwave plasma based on the phenomenon of skin-depth-limited contraction. Plasma Sources Sci Technol 28:115022

    Article  CAS  Google Scholar 

  16. Nunnally T et al (2011) Dissociation of CO2 in a low current gliding arc plasmatron. J Phys D Appl Phys 44:274009

    Article  Google Scholar 

  17. Liu J-L, Wang X, Li X-S, Likozar B, Zhu A-M (2020) CO2 conversion, utilisation and valorisation in gliding arc plasma reactors. J Phys D Appl Phys 53:253001

    Article  CAS  Google Scholar 

  18. Ramakers M, Trenchev G, Heijkers S, Wang W, Bogaerts A (2017) Gliding arc plasmatron: providing an alternative method for carbon dioxide conversion. Chemsuschem 10:2642–2652

    Article  CAS  PubMed  Google Scholar 

  19. Cleiren E, Heijkers S, Ramakers M, Bogaerts A (2017) Dry reforming of methane in a gliding arc plasmatron: towards a better understanding of the plasma chemistry. Chemsuschem 10:4025–4036

    Article  CAS  PubMed  Google Scholar 

  20. Trenchev G, Kolev S, Wang W, Ramakers M, Bogaerts A (2017) CO2 conversion in a gliding arc plasmatron: multidimensional modeling for improved efficiency. J Phys Chem C 121:24470–24479

    Article  CAS  Google Scholar 

  21. Montesano C, Faedda M, Martini LM, Dilecce G, Tosi P (2021) CH4 reforming with CO2 in a nanosecond pulsed discharge. The importance of the pulse sequence. J CO2 Util 49:101556

    Google Scholar 

  22. Jurković DL, Liu J-L, Pohar A, Likozar B (2021) Methane dry reforming over Ni/Al2O3 catalyst in spark plasma reactor: linking computational fluid dynamics (CFD) with reaction kinetic modelling. Catal Today 362:11–21

    Article  Google Scholar 

  23. Babaeva NY, Naidis G (2021) On the efficiency of CO2 conversion in corona and dielectric-barrier discharges. Plasma Sources Sci Technol 30:03LT03

    Google Scholar 

  24. Trenchev G, Nikiforov A, Wang W, Bogaerts A (2019) Atmospheric pressure glow discharge for CO2 conversion: model-based exploration of the optimum reactor configuration. Chem Eng J 362:830–841

    Article  CAS  Google Scholar 

  25. Wanten B et al (2022) Dry reforming of methane in an atmospheric pressure glow discharge: confining the plasma to expand the performance. J CO2 Util 56:101869

    Google Scholar 

  26. Vertongen R, Bogaerts A (2023) How important is reactor design for CO2 conversion in warm plasmas? J CO2 Util 72:102510

    Google Scholar 

  27. Ozkan A et al (2016) DBD in burst mode: solution for more efficient CO2 conversion? Plasma Sources Sci Technol 25:055005

    Article  Google Scholar 

  28. Van Laer K, Bogaerts A (2015) Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energ Technol 3:1038–1044

    Article  Google Scholar 

  29. Mei D et al (2016) Plasma-photocatalytic conversion of CO2 at low temperatures: understanding the synergistic effect of plasma-catalysis. Appl Catal B 182:525–532

    Article  CAS  Google Scholar 

  30. Li S, Gallucci F (2022) CO2 capture and activation with a plasma-sorbent system. Chem Eng J 430:132979

    Article  CAS  Google Scholar 

  31. Rusanov VD, Fridman A, Sholin GV (1981) The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules. Soviet Phys Uspekhi 24:447

    Google Scholar 

  32. Silva T, Britun N, Godfroid T, Snyders R (2014) Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Sci Technol 23:025009

    Article  CAS  Google Scholar 

  33. Bongers W et al (2017) Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Processes Polym 14:1600126

    Article  Google Scholar 

  34. Wolf AJ, Peeters F, Groen P, Bongers W, Van De Sanden M (2020) CO2 conversion in nonuniform discharges: disentangling dissociation and recombination mechanisms. J Phys Chem C 124:16806–16819

    Article  CAS  Google Scholar 

  35. Mercer ER et al (2023) Post-plasma quenching to improve conversion and energy efficiency in a CO2 microwave plasma. Fuel 334:126734

    Article  CAS  Google Scholar 

  36. Hecimovic A, Federico A, Carbone E, Fantz U (2022) Enhancement of CO2 conversion in microwave plasmas using a nozzle in the effluent. J CO2 Util 57:101870

    Google Scholar 

  37. Sun S, Wang H, Mei D, Tu X, Bogaerts A (2017) CO2 conversion in a gliding arc plasma: performance improvement based on chemical reaction modeling. J CO2 Util 17:220–234

    Google Scholar 

  38. Wang W, Mei D, Tu X, Bogaerts A (2017) Gliding arc plasma for CO2 conversion: better insights by a combined experimental and modelling approach. Chem Eng J 330:11–25

    Article  CAS  Google Scholar 

  39. Liu J-L, Park H-W, Chung W-J, Park D-W (2016) High-efficient conversion of CO 2 in AC-pulsed tornado gliding arc plasma. Plasma Chem Plasma P 36:437–449

    Google Scholar 

  40. Trenchev G, Bogaerts A (2020) Dual-vortex plasmatron: a novel plasma source for CO2 conversion. J CO2 Util 39:101152

    Google Scholar 

  41. Vermeiren V, Bogaerts A (2020) Plasma-based CO2 conversion: to quench or not to quench? J Phys Chem C 124:18401–18415

    Article  CAS  Google Scholar 

  42. Van Alphen S et al (2023) Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas. Chem Eng J 462:142217

    Article  Google Scholar 

  43. Aerts R, Snoeckx R, Bogaerts A (2014) In-situ chemical trapping of oxygen in the splitting of carbon dioxide by plasma. Plasma Processes Polym 11:985–992

    Article  CAS  Google Scholar 

  44. Chen G et al (2020) A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chem Eng J 392:123699

    Article  CAS  Google Scholar 

  45. Mori S, Matsuura N, Tun LL, Suzuki M (2016) Direct synthesis of carbon nanotubes from only CO2 by a hybrid reactor of dielectric barrier discharge and solid oxide electrolyser cell. Plasma Chem Plasma P 36:231–239

    Google Scholar 

  46. Li Z et al (2020) Boudouard reaction driven by thermal plasma for efficient CO2 conversion and energy storage. J Energy Chem 45:128–134

    Article  Google Scholar 

  47. Huang J et al (2021) Enhanced conversion of CO2 into O2-free fuel gas via the Boudouard reaction with biochar in an atmospheric plasmatron. J CO2 Util 45:101429

    Google Scholar 

  48. Girard-Sahun F, Biondo O, Trenchev G, van Rooij G, Bogaerts A (2022) Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream. Chem Eng J 442:136268

    Article  CAS  Google Scholar 

  49. Vertongen R, Trenchev G, Van Loenhout R, Bogaerts A (2022) Enhancing CO2 conversion with plasma reactors in series and O2 removal. J CO2 Util 66:102252

    Google Scholar 

  50. Delikonstantis E et al (2022) Exceeding equilibrium CO2 conversion by plasma-assisted chemical looping. ACS Energy Lett 7:1896–1902

    Article  CAS  Google Scholar 

  51. Snoeckx R, Zeng Y, Tu X, Bogaerts A (2015) Plasma-based dry reforming: improving the conversion and energy efficiency in a dielectric barrier discharge. RSC Adv 5:29799–29808

    Article  Google Scholar 

  52. Chun SM, Hong YC, Choi DH (2017) Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure. J CO2 Util 19:221–229

    Google Scholar 

  53. Sun H, Lee J, Bak MS (2021) Experiments and modeling of atmospheric pressure microwave plasma reforming of a methane-carbon dioxide mixture. J CO2 Util 46:101464

    Google Scholar 

  54. Kelly S, Mercer ER, De Meyer R, Bals S, Bogaerts A Microwave plasma-based dry reforming of methane: a focus on carbon formation. Available at SSRN 4486414

    Google Scholar 

  55. Tu X, Whitehead JC (2014) Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: co-generation of syngas and carbon nanomaterials. Int J Hydrogen Energy 39:9658–9669

    Article  CAS  Google Scholar 

  56. Martin-del-Campo J, Coulombe S, Kopyscinski J (2020) Influence of operating parameters on plasma-assisted dry reforming of methane in a rotating gliding arc reactor. Plasma Chem Plasma P 40:857–881

    Google Scholar 

  57. Li L et al (2019) Plasma-assisted CO2 conversion in a gliding arc discharge: improving performance by optimizing the reactor design. J CO2 Util 29:296–303

    Google Scholar 

  58. Van Alphen S et al (2021) Effect of N2 on CO2-CH4 conversion in a gliding arc plasmatron: can this major component in industrial emissions improve the energy efficiency? J CO2 Util 54:101767

    Google Scholar 

  59. Slaets J, Aghaei M, Ceulemans S, Van Alphen S, Bogaerts A (2020) CO2 and CH4 conversion in “real” gas mixtures in a gliding arc plasmatron: how do N2 and O2 affect the performance? Green Chem 22:1366–1377

    Article  CAS  Google Scholar 

  60. Li K, Liu J-L, Li X-S, Zhu X, Zhu A-M (2016) Warm plasma catalytic reforming of biogas in a heat-insulated reactor: dramatic energy efficiency and catalyst auto-reduction. Chem Eng J 288:671–679

    Article  CAS  Google Scholar 

  61. Li K et al (2018) Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis. Chem Eng J 353:297–304

    Article  CAS  Google Scholar 

  62. Neyts E, Bogaerts A (2014) Understanding plasma catalysis through modelling and simulation—a review. J Phys D Appl Phys 47:224010

    Article  Google Scholar 

  63. Bogaerts A et al (2020) The 2020 plasma catalysis roadmap. J Phys D Appl Phys 53:443001

    Article  CAS  Google Scholar 

  64. Loenders B, Michiels R, Bogaerts A (2023) Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions. J Energy Chem 85:501–533

    Google Scholar 

  65. Wang L, Yi Y, Guo H, Tu X (2018) Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catal 8:90–100

    Article  CAS  Google Scholar 

  66. Tu X, Whitehead JC (2012) Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature. Appl Catal B 125:439–448

    Article  CAS  Google Scholar 

  67. Sun Y et al (2022) Plasma-catalytic CO2 hydrogenation over a Pd/ZnO catalyst: in situ probing of gas-phase and surface reactions. JACS Au 2:1800–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen G, Snyders R, Britun N (2021) CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. J CO2 Util 49:101557

    Google Scholar 

  69. Yu Q, Kong M, Liu T, Fei J, Zheng X (2012) Characteristics of the decomposition of CO2 in a dielectric packed-bed plasma reactor. Plasma Chem Plasma P 32:153–163

    Google Scholar 

  70. Uytdenhouwen Y et al (2019) How process parameters and packing materials tune chemical equilibrium and kinetics in plasma-based CO2 conversion. Chem Eng J 372:1253–1264

    Article  CAS  Google Scholar 

  71. Chen G, Georgieva V, Godfroid T, Snyders R, Delplancke-Ogletree M-P (2016) Plasma assisted catalytic decomposition of CO2. Appl Catal B 190:115–124

    Article  CAS  Google Scholar 

  72. Ray D, Subrahmanyam C (2016) CO2 decomposition in a packed DBD plasma reactor: influence of packing materials. RSC Adv 6:39492–39499

    Article  CAS  Google Scholar 

  73. Mei D, Tu X (2017) Atmospheric pressure non-thermal plasma activation of CO2 in a packed-bed dielectric barrier discharge reactor. Chem Phys Chem 18:3253–3259

    Article  CAS  PubMed  Google Scholar 

  74. Wang L et al (2020) Plasma-enhanced direct conversion of CO2 to CO over oxygen-deficient Mo-doped CeO2. Chem Commun 56:14801–14804

    Article  CAS  Google Scholar 

  75. Ashford B, Wang Y, Poh C-K, Chen L, Tu X (2020) Plasma-catalytic conversion of CO2 to CO over binary metal oxide catalysts at low temperatures. Appl Catal B 276:119110

    Article  CAS  Google Scholar 

  76. Mei D, Zhu X, He Y-L, Yan JD, Tu X (2014) Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials. Plasma Sources Sci Technol 24:015011

    Article  Google Scholar 

  77. Zhang H et al (2020) Plasma-enhanced catalytic activation of CO2 in a modified gliding arc reactor. Waste Disposal Sustain Energy 2:139–150

    Article  Google Scholar 

  78. Chen G et al (2017) An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis. J Phys D Appl Phys 50:084001

    Article  Google Scholar 

  79. Zhu F et al (2017) Plasma-catalytic reforming of CO2-rich biogas over Ni/γ-Al2O3 catalysts in a rotating gliding arc reactor. Fuel 199:430–437

    Article  CAS  Google Scholar 

  80. Long H, Shang S, Tao X, Yin Y, Dai X (2008) CO2 reforming of CH4 by combination of cold plasma jet and Ni/γ-Al2O3 catalyst. Int J Hydrogen Energy 33:5510–5515

    Article  CAS  Google Scholar 

  81. George A et al (2021) A review of non-thermal plasma technology: a novel solution for CO2 conversion and utilization. Renew Sustain Energy Rev 135:109702

    Article  CAS  Google Scholar 

  82. Zeng Y, Zhu X, Mei D, Ashford B, Tu X (2015) Plasma-catalytic dry reforming of methane over γ-Al2O3 supported metal catalysts. Catal Today 256:80–87

    Article  CAS  Google Scholar 

  83. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC (2011) Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor. J Phys D Appl Phys 44:274007

    Article  Google Scholar 

  84. Mei DH, Liu SY, Tu X (2017) CO2 reforming with methane for syngas production using a dielectric barrier discharge plasma coupled with Ni/γ-Al2O3 catalysts: process optimization through response surface methodology. J CO2 Util 21:314–326

    Google Scholar 

  85. Andersen JA, Christensen JM, Østberg M, Bogaerts A, Jensen AD (2020) Plasma-catalytic dry reforming of methane: screening of catalytic materials in a coaxial packed-bed DBD reactor. Chem Eng J 397:125519

    Article  CAS  Google Scholar 

  86. Li Y et al (2023) CH4 and CO2 conversion over boron nitride-supported Ni catalysts with BO defects in DBD plasma. Fuel Process Technol 242:107655

    Article  CAS  Google Scholar 

  87. Sheng Z, Kim H-H, Yao S, Nozaki T (2020) Plasma-chemical promotion of catalysis for CH4 dry reforming: unveiling plasma-enabled reaction mechanisms. Phys Chem Chem Phys 22:19349–19358

    Article  CAS  PubMed  Google Scholar 

  88. Sheng Z, Watanabe Y, Kim H-H, Yao S, Nozaki T (2020) Plasma-enabled mode-selective activation of CH4 for dry reforming: first touch on the kinetic analysis. Chem Eng J 399:125751

    Article  CAS  Google Scholar 

  89. Sheng Z, Kameshima S, Yao S, Nozaki T (2018) Oxidation behavior of Ni/Al2O3 catalyst in nonthermal plasma-enabled catalysis. J Phys D Appl Phys 51:445205

    Article  Google Scholar 

  90. Sheng Z et al (2019) Factors determining synergism in plasma catalysis of biogas at reduced pressure. J Phys D Appl Phys 52:414002

    Article  CAS  Google Scholar 

  91. Wang J, Zhang K, Mertens M, Bogaerts A, Meynen V (2023) Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: importance of uniform (sub) micron packings/catalysts to enhance the performance. Appl Catal B Environ 337:122977

    Google Scholar 

  92. Kameshima S, Mizukami R, Yamazaki T, Prananto LA, Nozaki T (2018) Interfacial reactions between DBD and porous catalyst in dry methane reforming. J Phys D Appl Phys 51:114006

    Article  Google Scholar 

  93. Ray D, Reddy PMK, Subrahmanyam C (2018) Ni-Mn/γ-Al2O3 assisted plasma dry reforming of methane. Catal Today 309:212–218

    Article  CAS  Google Scholar 

  94. Zhang A-J, Zhu A-M, Guo J, Xu Y, Shi C (2010) Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis. Chem Eng J 156:601–606

    Article  CAS  Google Scholar 

  95. Mei D et al (2023) Plasma-catalytic reforming of biogas into syngas over Ni-based bimetallic catalysts. Chem Eng J 462:142044

    Article  CAS  Google Scholar 

  96. Zeng YX et al (2018) Low temperature reforming of biogas over K-, Mg- and Ce-promoted Ni/Al2O3 catalysts for the production of hydrogen rich syngas: understanding the plasma-catalytic synergy. Appl Catal B 224:469–478

    Article  CAS  Google Scholar 

  97. Chen X et al (2021) CH4 dry reforming in fluidized-bed plasma reactor enabling enhanced plasma-catalyst coupling. J CO2 Util 54:101771

    Google Scholar 

  98. Zeng Y et al (2023) Biogas reforming for hydrogen-rich syngas production over a Ni–K/Al2O3 catalyst using a temperature-controlled plasma reactor. Int J Hydrogen Energy 48:6192–6203

    Article  CAS  Google Scholar 

  99. Zeng Y et al (2022) Plasma-catalytic biogas reforming for hydrogen production over K-promoted Ni/Al2O3 catalysts: effect of K-loading. J Energy Inst 104:12–21

    Article  CAS  Google Scholar 

  100. Diao Y et al (2022) Plasma-assisted dry reforming of methane over Mo2C-Ni/Al2O3 catalysts: effects of β-Mo2C promoter. Appl Catal B 301:120779

    Article  CAS  Google Scholar 

  101. Mei D, Ashford B, He YL, Tu X (2017) Plasma-catalytic reforming of biogas over supported Ni catalysts in a dielectric barrier discharge reactor: effect of catalyst supports. Plasma Processes Polym 14:1600076

    Article  Google Scholar 

  102. Vakili R et al (2020) Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. Appl Catal B 260:118195

    Article  CAS  Google Scholar 

  103. Gallon HJ, Tu X, Whitehead JC (2012) Effects of reactor packing materials on H2 production by CO2 reforming of CH4 in a dielectric barrier discharge. Plasma Processes Polym 9:90–97

    Article  CAS  Google Scholar 

  104. Jiang T et al (2002) Plasma methane conversion using dielectric-barrier discharges with zeolite A. Catal Today 72:229–235

    Article  CAS  Google Scholar 

  105. Zhang K, Eliasson B, Kogelschatz U (2002) Direct conversion of greenhouse gases to synthesis gas and C4 hydrocarbons over zeolite HY promoted by a dielectric-barrier discharge. Ind Eng Chem Res 41:1462–1468

    Article  CAS  Google Scholar 

  106. Zhang K, Kogelschatz U, Eliasson B (2001) Conversion of greenhouse gases to synthesis gas and higher hydrocarbons. Energy Fuels 15:395–402

    Article  CAS  Google Scholar 

  107. Eliasson B, Liu C-J, Kogelschatz U (2000) Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites. Ind Eng Chem Res 39:1221–1227

    Article  CAS  Google Scholar 

  108. Michielsen I, Uytdenhouwen Y, Bogaerts A, Meynen V (2019) Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material. Catalysts 9:51

    Article  Google Scholar 

  109. Wang Y et al (2022) Catalyst-free single-step plasma reforming of CH4 and CO2 to higher value oxygenates under ambient conditions. Chem Eng J 450:137860

    Article  CAS  Google Scholar 

  110. Li J et al (2023) One-step plasma reforming of CO2CH4 into hydrogen and liquid fuels: the roles of Cu and Fe sites on products distribution. Fuel Process Technol 242:107648

    Article  CAS  Google Scholar 

  111. Li D et al (2023) Orientating the plasma-catalytic conversion of CO2 and CH\ toward liquid products by using a composite catalytic bed. Appl Catal A 650:119015

    Article  CAS  Google Scholar 

  112. Wang L et al (2023) Direct conversion of CH4 and CO2 to alcohols using plasma catalysis over Cu/Al(OH)3 catalysts. Chem Eng J 466:143347

    Article  CAS  Google Scholar 

  113. Dou L et al (2022) Disentangling metallic cobalt sites and oxygen vacancy effects in synergistic plasma-catalytic CO2/CH4 conversion into oxygenates. Appl Catal B 318:121830

    Article  CAS  Google Scholar 

  114. Mei D et al (2023) Plasma-enabled catalytic dry reforming of CH4 into syngas, hydrocarbons and oxygenates: insight into the active metals of γ-Al2O3 supported catalysts. J CO2 Util 67:102307

    Google Scholar 

  115. Wang Y et al (2022) Insight into the synthesis of alcohols and acids in plasma-driven conversion of CO2 and CH4 over copper-based catalysts. Appl Catal B 315:121583

    Article  CAS  Google Scholar 

  116. Wang L, Yi Y, Wu C, Guo H, Tu X (2017) One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis. Angew Chem Int Ed 56:13679–13683

    Article  CAS  Google Scholar 

  117. Zou J-J, Zhang Y-P, Liu C-J, Li Y, Eliasson B (2003) Starch-enhanced synthesis of oxygenates from methane and carbon dioxide using dielectric-barrier discharges. Plasma Chem Plasma P 23:69–82

    Google Scholar 

  118. Martin-del-Campo J, Uceda M, Coulombe S, Kopyscinski J (2021) Plasma-catalytic dry reforming of methane over Ni-supported catalysts in a rotating gliding arc—spouted bed reactor. J CO2 Util 46:101474

    Google Scholar 

  119. Chen X, Kim HH, Nozaki T (2023) Plasma catalytic technology for CH4 and CO2 conversion: a review highlighting fluidized‐bed plasma reactor. Plasma Processes Polym e2200207

    Google Scholar 

  120. Cui Z et al (2022) Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: insights into the reaction mechanism. ACS Catal 12:1326–1337

    Article  CAS  Google Scholar 

  121. Porosoff MD, Yan B, Chen JG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 9:62–73

    Article  CAS  Google Scholar 

  122. Zeng Y, Tu X (2017) Plasma-catalytic hydrogenation of CO2 for the cogeneration of CO and CH4 in a dielectric barrier discharge reactor: effect of argon addition. J Phys D Appl Phys 50:184004

    Article  Google Scholar 

  123. Sun Y et al (2020) Reverse water-gas shift in a packed bed DBD reactor: investigation of metal-support interface towards a better understanding of plasma catalysis. Appl Catal A 591:117407

    Article  Google Scholar 

  124. Liu L et al (2020) Low temperature catalytic reverse water-gas shift reaction over perovskite catalysts in DBD plasma. Appl Catal B 265:118573

    Article  CAS  Google Scholar 

  125. Liu L, Zhang Z, Das S, Xi S, Kawi S (2020) LaNiO3 as a precursor of Ni/La2O3 for reverse water-gas shift in DBD plasma: effect of calcination temperature. Energy Convers Manage 206:112475

    Article  CAS  Google Scholar 

  126. Liu L et al (2022) Plasma-catalytic carbon dioxide conversion by reverse water–gas shift over La0. 9Ce0. 1B0. 5B’0.5 O3-δ perovskite-derived bimetallic catalysts. Chem Eng J 431:134009

    Google Scholar 

  127. Li J et al (2019) Effect of plasma on catalytic conversion of CO2 with hydrogen over Pd/ZnO in a dielectric barrier discharge reactor. J Phys D Appl Phys 52:244001

    Article  CAS  Google Scholar 

  128. Kim D-Y et al (2022) Cooperative catalysis of vibrationally excited CO2 and alloy catalyst breaks the thermodynamic equilibrium limitation. J Am Chem Soc 144:14140–14149

    Article  CAS  PubMed  Google Scholar 

  129. Zeng Y, Tu X (2015) Plasma-catalytic CO2 hydrogenation at low temperatures. IEEE Trans Plasma Sci 44:405–411

    Article  Google Scholar 

  130. Xu W, Zhang X, Dong M, Zhao J, Di L (2019) Plasma-assisted Ru/Zr-MOF catalyst for hydrogenation of CO2 to methane. Plasma Sci Technol 21:044004

    Article  CAS  Google Scholar 

  131. Chen H et al (2020) Effect of metal dispersion and support structure of Ni/silicalite-1 catalysts on non-thermal plasma (NTP) activated CO2 hydrogenation. Appl Catal B 272:119013

    Article  CAS  Google Scholar 

  132. Mikhail M et al (2021) Tailoring physicochemical and electrical properties of Ni/CeZrOx doped catalysts for high efficiency of plasma catalytic CO2 methanation. Appl Catal B 294:120233

    Article  CAS  Google Scholar 

  133. Nizio M et al (2016) Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. Int J Hydrogen Energy 41:11584–11592

    Article  CAS  Google Scholar 

  134. Ahmad F et al (2020) Low-temperature CO2 methanation: synergistic effects in plasma-Ni hybrid catalytic system. Acs Sustain Chem Eng 8:1888–1898

    Article  CAS  Google Scholar 

  135. Chen H et al (2020) Nonthermal plasma (NTP) activated metal–organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation. AIChE J 66:e16853

    Article  CAS  Google Scholar 

  136. Chen H et al (2019) Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation. Catal Sci Technol 9:4135–4145

    Article  CAS  Google Scholar 

  137. Mu Y et al (2020) Kinetic study of nonthermal plasma activated catalytic CO2 hydrogenation over Ni supported on silica catalyst. Ind Eng Chem Res 59:9478–9487

    Article  CAS  Google Scholar 

  138. Bacariza M et al (2018) DBD plasma-assisted CO2 methanation using zeolite-based catalysts: structure composition-reactivity approach and effect of Ce as promoter. J CO2 Util 26:202–211

    Google Scholar 

  139. Biset-Peiró M, Guilera J, Zhang T, Arbiol J, Andreu T (2019) On the role of ceria in Ni-Al2O3 catalyst for CO2 plasma methanation. Appl Catal A 575:223–229

    Article  Google Scholar 

  140. Wang B et al (2021) Improvement of the activity of CO2 methanation in a hybrid plasma-catalytic process in varying catalyst particle size or under pressure. J CO2 Util 46:101471

    Google Scholar 

  141. Wang B et al (2020) Coupling experiment and simulation analysis to investigate physical parameters of CO2 methanation in a plasma-catalytic hybrid process. Plasma Processes Polym 17:1900261

    Article  CAS  Google Scholar 

  142. Wierzbicki D et al (2020) Ni-Fe layered double hydroxide derived catalysts for non-plasma and DBD plasma-assisted CO2 methanation. Int J Hydrogen Energy 45:10423–10432

    Article  CAS  Google Scholar 

  143. Biset-Peiró M, Mey R, Guilera J, Andreu T (2020) Adiabatic plasma-catalytic reactor configuration: energy efficiency enhancement by plasma and thermal synergies on CO2 methanation. Chem Eng J 393:124786

    Article  Google Scholar 

  144. Mikhail M et al (2019) Plasma-catalytic hybrid process for CO2 methanation: optimization of operation parameters. React Kinet Mech Catal 126:629–643

    Article  CAS  Google Scholar 

  145. Lan L, Wang A, Wang Y (2019) CO2 hydrogenation to lower hydrocarbons over ZSM-5-supported catalysts in a dielectric-barrier discharge plasma reactor. Catal Commun 130:105761

    Article  Google Scholar 

  146. Parastaev A, Hoeben WF, van Heesch BE, Kosinov N, Hensen EJ (2018) Temperature-programmed plasma surface reaction: an approach to determine plasma-catalytic performance. Appl Catal B 239:168–177

    Article  CAS  Google Scholar 

  147. Lee CJ, Lee DH, Kim T (2017) Enhancement of methanation of carbon dioxide using dielectric barrier discharge on a ruthenium catalyst at atmospheric conditions. Catal Today 293:97–104

    Article  Google Scholar 

  148. Benrabbah R et al (2017) Plasma DBD activated ceria-zirconia-promoted Ni-catalysts for plasma catalytic CO2 hydrogenation at low temperature. Catal Commun 89:73–76

    Article  CAS  Google Scholar 

  149. Nizio M et al (2016) Low temperature hybrid plasma-catalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts. Catal Commun 83:14–17

    Article  CAS  Google Scholar 

  150. Jwa E, Lee S, Lee H, Mok Y (2013) Plasma-assisted catalytic methanation of CO and CO2 over Ni–zeolite catalysts. Fuel Process Technol 108:89–93

    Article  CAS  Google Scholar 

  151. Ronda-Lloret M et al (2020) CO2 hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts. Acs Sustain Chem Eng 8:17397–17407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jiang X, Nie X, Guo X, Song C, Chen JG (2020) Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev 120:7984–8034

    Article  CAS  PubMed  Google Scholar 

  153. Eliasson B, Kogelschatz U, Xue B, Zhou L-M (1998) Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Ind Eng Chem Res 37:3350–3357

    Article  CAS  Google Scholar 

  154. Du J et al (2022) Numerical investigation on the heterogeneous pulsed dielectric barrier discharge plasma catalysis for CO2 hydrogenation at atmospheric pressure: effects of Ni and Cu catalysts on the selectivity conversions to CH4 and CH3OH. Plasma Processes Polym 19:2100111

    Article  CAS  Google Scholar 

  155. Joshi N, Loganathan S (2021) Methanol synthesis from CO2 using Ni and Cu supported Fe catalytic system: understanding the role of nonthermal plasma surface discharge. Plasma Processes Polym 18:2000104

    Article  CAS  Google Scholar 

  156. Zhang X et al (2023) Boosting methanol production via plasma catalytic CO2 hydrogenation over a MnOx/ZrO2 catalyst. Catal Sci Technol 13:2529–2539

    Article  CAS  Google Scholar 

  157. Kong T, Jiang Y, Xiong Y (2020) Photocatalytic CO2 conversion: what can we learn from conventional COx hydrogenation? Chem Soc Rev 49:6579–6591

    Article  CAS  PubMed  Google Scholar 

  158. Nitopi S et al (2019) Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 119:7610–7672

    Article  CAS  PubMed  Google Scholar 

  159. Snoeckx R, Ozkan A, Reniers F, Bogaerts A (2017) The quest for value-added products from carbon dioxide and water in a dielectric barrier discharge: a chemical kinetics study. Chemsuschem 10:409–424

    Article  CAS  PubMed  Google Scholar 

  160. Chen G et al (2015) Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge. Int J Hydrogen Energy 40:3789–3796

    Article  CAS  Google Scholar 

  161. Hoeben W, Van Heesch E, Beckers F, Boekhoven W, Pemen A (2015) Plasma-driven water assisted CO2 methanation. IEEE Trans Plasma Sci 43:1954–1958

    Article  CAS  Google Scholar 

  162. Ma X et al (2019) Plasma assisted catalytic conversion of CO2 and H2O over Ni/Al2O3 in a DBD reactor. Plasma Chem Plasma P 39:109–124

    Google Scholar 

  163. Mahammadunnisa S, Reddy EL, Ray D, Subrahmanyam C, Whitehead JC (2013) CO2 reduction to syngas and carbon nanofibres by plasma-assisted in situ decomposition of water. Int J Greenhouse Gas Control 16:361–363

    Article  CAS  Google Scholar 

  164. Yang S et al (2021) CO2 Reduction to higher hydrocarbons by plasma discharge in carbonated water. ACS Energy Lett 6:3924–3930

    Article  CAS  Google Scholar 

  165. Wang A et al (2019) Nonthermal plasma-catalytic conversion of biogas to liquid chemicals with low coke formation. Energy Convers Manage 191:93–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemie Bogaerts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bogaerts, A., Tu, X., Nozaki, T. (2024). Plasma-Based CO2 Conversion. In: Zhang, G., Bogaerts, A., Ye, J., Liu, Cj. (eds) Advances in CO2 Utilization. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-8822-8_10

Download citation

Publish with us

Policies and ethics