Skip to main content

Sustainability of Biojet Fuel

  • Chapter
  • First Online:
Biojet Fuel: Current Technology and Future Prospect

Abstract

The unavoidable detrimental impacts on the environment due to continuous dependency on traditional jet fuels have urged global initiatives in the direction of alternate possibilities for the aviation sector. The lack of possibilities for decarbonization of fossil fuels has made the adoption of biojet fuels (BJF) a success because of their critical contribution to the aviation sector as a means to reduce greenhouse gas (GHG) emissions. The long lifespan and substantial capital expenses of aircraft make the rapid substitution with carbon-neutral technologies a less favorable choice. Therefore, “drop-in” solutions that can be installed seamlessly in the engines of current aircraft may be needed. The usage of lignocellulosic biomass in the Fischer-Tropsch production pathway has the highest probability of reducing GHG emissions and could possibly be useful for the mid- to long-range objectives of the airline sector, but because of its restricted technological development and higher capital expenditures, more study and optimization are needed before it can be implemented on a large scale. Practically, the “optimum” raw materials and advancements in logistics management are significantly reliant on spatiotemporal parameters. Furthermore, most studied factors are connected to one another, and the strategies that are operative in the mitigation of GHG emissions are mostly expensive. Therefore, guidelines must be rationalized via the constituents of logistics management to aid the economic and long-term use of BJF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ağbulut Ü, Sirohi R, Lichtfouse E, Chen WH, Len C, Show PL, Le AT, Nguyen XP, Hoang AT (2023) Microalgae bio-oil production through pyrolysis and hydrothermal liquefaction: mechanism and characteristics. Bioresour Technol 376:128860

    Article  PubMed  Google Scholar 

  • Agusdinata DB, Zhao F, Ileleji K, DeLaurentis D (2011) Life cycle assessment of potential biojet fuel production in the United States. Environ Sci Technol 45(21):9133–9143

    Article  CAS  PubMed  Google Scholar 

  • Ail SS, Dasappa S (2016) Biomass to liquid transportation fuel via Fischer Tropsch synthesis–technology review and current scenario. Renew Sust Energ Rev 58:267–286

    Article  CAS  Google Scholar 

  • Alalwan HA, Alminshid AH, Aljaafari HA (2019) Promising evolution of biofuel generations. Subject review. Renew Energy Focus 28:127–139

    Article  Google Scholar 

  • Alcazar-Ruiz A, Ortiz ML, Dorado F, Sanchez-Silva L (2022) Gasification versus fast pyrolysis bio-oil production: a life cycle assessment. J Clean Prod 336:130373

    Article  CAS  Google Scholar 

  • Alenezi R, Baig M, Wang J, Santos R, Leeke GA (2010) Continuous flow hydrolysis of sunflower oil for biodiesel. Energy Sources Part A Recov Utilizat Env Effects 32(5):460–468

    Article  CAS  Google Scholar 

  • Ali MH, Zailani S, Iranmanesh M, Foroughi B (2019) Impacts of environmental factors on waste, energy, and resource management and sustainable performance. Sustainability 11(8):2443

    Article  Google Scholar 

  • Ashok B, Nanthagopal K, Saravanan B, Azad K, Patel D, Sudarshan B, Ramasamy RA (2019) Study on isobutanol and Calophyllum inophyllum biodiesel as a partial replacement in CI engine applications. Fuel 235:984–994

    Article  CAS  Google Scholar 

  • ASTM (2019) ASTM D1655-19a, Standard Specification for Aviation Turbine Fuels. Pennsylvania, USA, American Society for Testing and Materials (ASTM)

    Google Scholar 

  • ATAG (2017) Beginner’s guide to sustainable aviation fuel. Geneva: air transport action group (ATAG), 1–24. Available online at https://aviationbenefits.org/media/166152/beginners-guide-to-saf_web.pdf. Accessed 23 July 2019

  • AviationPros (2015) Gevo’s jet fuel to be used in first ever test flight flown on fuel derived from wood waste. Available online at https://www.aviationpros.com/contact-us. Accessed 29 July 2019

  • Ayompe LM, Schaafsma M, Egoh BN (2021) Towards sustainable palm oil production: the positive and negative impacts on ecosystem services and human wellbeing. J Clean Prod 278:123914

    Article  Google Scholar 

  • Bailis RE, Baka JE (2010) Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil. Environ Sci Technol 44(22):8684–8691

    Article  CAS  PubMed  Google Scholar 

  • Baliban RC, Elia JA, Floudas CA, Xiao X, Zhang Z, Li J et al (2013) Thermochemical conversion of duckweed biomass to gasoline, diesel, and jet fuel: process synthesis and global optimization. Ind Eng Chem Res 52(33):11436–11450

    Article  CAS  Google Scholar 

  • Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Riahi K (2008) IPCC, 2007: climate change 2007: synthesis report

    Google Scholar 

  • Bwapwa JK, Anandraj A, Trois C (2018) Conceptual process design and simulation of microalgae oil conversion to aviation fuel. Biofuels Bioprod Biorefin 12(6):935–948

    Article  CAS  Google Scholar 

  • Caicedo M, Barros J, Ordás B (2016) Redefining agricultural residues as bioenergy feedstocks. Materials 9(8):635

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavelius P, Engelhart-Straub S, Mehlmer N, Lercher J, Awad D, Brück T (2023) The potential of biofuels from first to fourth generation. PLoS Biol 21(3):e3002063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Brewer CE (2017) Producing jet fuel from biomass lignin: potential pathways to alkyl-benzenes and cycloalkanes. Renew Sust Energ Rev 72:673–722

    Article  CAS  Google Scholar 

  • De Corato U, De Bari I, Viola E, Pugliese M (2018) Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: a review. Renew Sust Energ Rev 88:326–346

    Article  Google Scholar 

  • Devi A, Bajar S, Kour H, Kothari R, Pant D, Singh A (2022) Lignocellulosic biomass valorization for bioethanol production: a circular bioeconomy approach. Bioenergy Res 15(4):1820–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieterich V, Buttler A, Hanel A, Spliethoff H, Fendt S (2020) Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. Energy Environ Sci 13(10):3207–3252

    Article  CAS  Google Scholar 

  • Doliente SS, Narayan A, Tapia JFD, Samsatli NJ, Zhao Y, Samsatli S (2020) Bio-aviation fuel: a comprehensive review and analysis of the supply chain components. Front Energy Res 8:110

    Article  Google Scholar 

  • Elgowainy A, Han J, Wang M, Carter N, Stratton R, Hileman J, Malwitz A, Balasubramanian S (2012) Life-cycle analysis of alternative aviation fuels in GREET (No. ANL/ESD/12-8). Argonne National lab. (ANL), Argonne (United States)

    Google Scholar 

  • Elkelawy M, Bastawissi HAE, Radwan AM, Ismail MT, El-Sheekh M (2022) Biojet fuels production from algae: conversion technologies, characteristics, performance, and process simulation. In: Handbook of algal biofuels. Elsevier: Amsterdam, Netherlands, pp 331–361

    Chapter  Google Scholar 

  • Gegg P, Budd L, Ison S (2014) The market development of aviation biofuel: drivers and constraints. J Air Transp Manag 39:34–40

    Article  Google Scholar 

  • Geleynse S, Brandt K, Garcia-Perez M, Wolcott M, Zhang X (2018) The alcohol-to-jet conversion pathway for drop-in biofuels: techno-economic evaluation. ChemSusChem 11(21):3728–3741

    Article  CAS  PubMed  Google Scholar 

  • Gogulancea V, Rolfe A, Jaffar M, Brandoni C, Atsonios K, Detsios N, Dieringer P, Huang Y (2023) Technoeconomic and environmental assessment of biomass chemical looping gasification for advanced biofuel production. Int J Energy Res 1–17

    Google Scholar 

  • Goh BHH, Ong HC, Cheah MY, Chen WH, Yu KL, Mahlia TMI (2019) Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sust Energ Rev 107:59–74

    Article  CAS  Google Scholar 

  • Gutiérrez-Antonio C, Gómez-Castro FI, de Lira-Flores JA, Hernández S (2017) A review on the production processes of renewable jet fuel. Renew Sust Energ Rev 79:709–729

    Article  Google Scholar 

  • Hari TK, Yaakob Z, Binitha NN (2015) Aviation biofuel from renewable resources: routes, opportunities and challenges. Renew Sust Energ Rev 42:1234–1244

    Article  Google Scholar 

  • Harvey BG, Quintana RL (2010) Synthesis of renewable jet and diesel fuels from 2-ethyl-1-hexene. Energy Environ Sci 3(3):352–357

    Article  CAS  Google Scholar 

  • Hendricks RC, Bushnell DM, Shouse DT (2011) Aviation fueling: a cleaner, greener approach. Int J Rotating Mach:1–13

    Google Scholar 

  • Herr A, Braid A, Carter J, McIvor J, Murphy HT, O’Connell D, Raisbeck-Brown N, Poole M (2016) Cut your grass and eat it too–is aviation biofuel production and grazing in the Australian tropics possible? Renew Sust Energ Rev 53:1377–1388

    Article  Google Scholar 

  • Hileman JI, Ortiz DS, Bartis JT, Wong HM, Donohoo PE, Weiss MA, Waitz IA (2009) Near-term feasibility of alternative jet fuels (No. Partner-COE-2009-001). Rand Corporation

    Google Scholar 

  • Holmgren K, Hagberg L (2009) Life cycle assessment of climate impact of Fischer-Tropsch diesel based on peat and biomass. IVL Svenska Miljöinstitutet

    Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  CAS  PubMed  Google Scholar 

  • ICAO (2016) Carbon offsetting and reduction scheme for international aviation (CORSIA)

    Google Scholar 

  • ICAO (2019) CORSIA supporting document: eligible fuels – life cycle assessment methodology. International Civil Aviation Organization, Montreal

    Google Scholar 

  • Jiménez-Díaz L, Caballero A, Pérez-Hernández N, Segura A (2017) Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives. Microb Biotechnol 10(1):103–124

    Article  PubMed  Google Scholar 

  • de Jong S, Hoefnagels R, Wetterlund E, Pettersson K, Faaij A, Junginger M (2017) Cost optimization of biofuel production–the impact of scale, integration, transport and supply chain configurations. Appl Energy 195:1055–1070

    Article  Google Scholar 

  • Kargbo H, Harris JS, Phan AN (2021) “Drop-in” fuel production from biomass: critical review on techno-economic feasibility and sustainability. Renew Sust Energ Rev 135:110168

    Article  CAS  Google Scholar 

  • Kargbo HO, Ng KS, Phan AN (2022) Evaluation of the economic feasibility of a two-stage gasification system for hydrogen, liquid fuels and energy production from residues. Energy Convers Manag 253:115126

    Article  CAS  Google Scholar 

  • Karmee SK (2017) Fuel not food—towards sustainable utilization of gutter oil. Biofuels 8(3):339–346

    Article  CAS  Google Scholar 

  • Karthick C, Nanthagopal K (2021) A comprehensive review on ecological approaches of waste to wealth strategies for production of sustainable biobutanol and its suitability in automotive applications. Energy Convers Manag 239:114219

    Article  CAS  Google Scholar 

  • Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349

    Article  CAS  PubMed  Google Scholar 

  • Lee RA, Lavoie JM (2013) From first-to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim Front 3(2):6–11

    Article  Google Scholar 

  • Li Y, Meng L, Nithyanandan K, Lee TH, Lin Y, Chia-fon FL, Liao S (2016) Combustion, performance and emissions characteristics of a spark-ignition engine fueled with isopropanol-n-butanol-ethanol and gasoline blends. Fuel 184:864–872

    Article  CAS  Google Scholar 

  • Lim JHK, Gan YY, Ong HC, Lau BF, Chen WH, Chong CT, Ling TC, Klemeš JJ (2021) Utilization of microalgae for bio-jet fuel production in the aviation sector: challenges and perspective. Renew Sust Energ Rev 149:111396

    Article  CAS  Google Scholar 

  • Liu Y, Cruz-Morales P, Zargar A, Belcher MS, Pang B, Englund E, Dan Q, Yin K, Keasling JD (2021) Biofuels for a sustainable future. Cell 184(6):1636–1647

    Article  CAS  PubMed  Google Scholar 

  • Lu HR, El Hanandeh A (2017) Assessment of bioenergy production from mid-rotation thinning of hardwood plantation: life cycle assessment and cost analysis. Clean Techn Environ Policy 19:2021–2040

    Article  Google Scholar 

  • Marano JJ, Ciferno JP (2001) Life-cycle greenhouse gas emissions inventory for Fischer-Tropsch fuels. US Department of Energy. National Energy Technology Laboratory, June

    Google Scholar 

  • Martinelli M, Gnanamani MK, LeViness S, Jacobs G, Shafer WD (2020) An overview of Fischer-Tropsch synthesis: XtL processes, catalysts and reactors. Appl Catal A Gen 608:117740

    Article  CAS  Google Scholar 

  • Martinez Hernandez E, Ng KS (2018) Design of biorefinery systems for conversion of corn Stover into biofuels using a biorefinery engineering framework. Clean Techn Environ Policy 20:1501–1514

    Article  CAS  Google Scholar 

  • Martinez-Villarreal S, Breitenstein A, Nimmegeers P, Saura PP, Hai B, Asomaning J, Eslami AA, Billen P, Passel SV, Bressler DC, Debecker DP, Remacle C, Richel A (2022) Drop-in biofuels production from microalgae to hydrocarbons: microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation. Biomass Bioenergy 165:106555

    Article  CAS  Google Scholar 

  • Mat Aron NS, Khoo KS, Chew KW, Show PL, Chen WH, Nguyen THP (2020) Sustainability of the four generations of biofuels–a review. Int J Energy Res 44(12):9266–9282

    Article  CAS  Google Scholar 

  • Mathioudakis V, Gerbens-Leenes PW, Van der Meer TH, Hoekstra AY (2017) The water footprint of second-generation bioenergy: a comparison of biomass feedstocks and conversion techniques. J Clean Prod 148:571–582

    Article  Google Scholar 

  • de Medeiros AM, de Sousa Castro K, de Macêdo MLG, de Morais Araújo AM, da Silva DR, Gondim AD (2022) Catalytic pyrolysis of coconut oil with Ni/SBA-15 for the production of bio jet fuel. RSC Adv 12(16):10163–10176

    Article  Google Scholar 

  • Meijaard E, Brooks TM, Carlson KM, Slade EM, Garcia-Ulloa J, Gaveau DL, Lee JSH, Santika T, Juffe-Bignoli D, Struebig MJ, Wich SA (2020) The environmental impacts of palm oil in context. Nature plants 6(12):1418–1426

    Article  PubMed  Google Scholar 

  • Mesfun S, Sanchez DL, Leduc S, Wetterlund E, Lundgren J, Biberacher M, Kraxner F (2017) Power-to-gas and power-to-liquid for managing renewable electricity intermittency in the Alpine region. Renew Energy 107:361–372

    Article  Google Scholar 

  • Millinger M, Ponitka J, Arendt O, Thrän D (2017) Competitiveness of advanced and conventional biofuels: results from least-cost modelling of biofuel competition in Germany. Energy Policy 107:394–402

    Article  CAS  Google Scholar 

  • Moioli E, Salvati F, Chiesa M, Siecha RT, Manenti F, Laio F, Rulli MC (2018) Analysis of the current world biofuel production under a water–food–energy nexus perspective. Adv Water Resour 121:22–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Mu D, Seager T, Rao PS, Zhao F (2010) Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion. Environ Manag 46:565–578

    Article  Google Scholar 

  • Muhammad G, Alam MA, Mofijur M, Jahirul MI, Lv Y, Xiong W, Ong HC, Xu J (2021) Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renew Sust Energ Rev 135:110209

    Article  Google Scholar 

  • Murphy HT, O’Connell DA, Raison RJ, Warden AC, Booth TH, Herr A, Braid AL, Crawford DF, Hayward JA, Jovanovic T, McIvor JG (2015) Biomass production for sustainable aviation fuels: a regional case study in Queensland. Renew Sust Energ Rev 44:738–750

    Article  Google Scholar 

  • Nassar AM, Moura P, Granço G, Harfuch L (2012) Benchmark of cane-derived renewable jet fuel against major sustainability standards. ICONE, July.

    Google Scholar 

  • Nazari MT, Mazutti J, Basso LG, Colla LM, Brandli L (2021) Biofuels and their connections with the sustainable development goals: a bibliometric and systematic review. Environ Dev Sustain 23(8):11139–11156

    Article  Google Scholar 

  • Ng KS, Farooq D, Yang A (2021) Global biorenewable development strategies for sustainable aviation fuel production. Renew Sust Energ Rev 150:111502

    Article  CAS  Google Scholar 

  • Ng KS, Sadhukhan J (2011) Process integration and economic analysis of bio-oil platform for the production of methanol and combined heat and power. Biomass Bioenergy 35(3):1153–1169

    Article  CAS  Google Scholar 

  • Noh HM, Benito A, Alonso G (2016) Study of the current incentive rules and mechanisms to promote biofuel use in the EU and their possible application to the civil aviation sector. Transp Res Part D Transp Environ 46:298–316

    Article  Google Scholar 

  • Okolie JA, Nanda S, Dalai AK, Kozinski JA (2021) Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valoriz 12:2145–2169

    Article  CAS  Google Scholar 

  • Pan W, Li K, Teng Y (2018) Rethinking system boundaries of the life cycle carbon emissions of buildings. Renew Sust Energ Rev 90:379–390

    Article  Google Scholar 

  • Pandiyan K, Singh A, Singh S, Saxena AK, Nain L (2019) Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renew Energy 132:723–741

    Article  Google Scholar 

  • Paschalidou A, Tsatiris M, Kitikidou K (2016) Energy crops for biofuel production or for food?-SWOT analysis (case study: Greece). Renew Energy 93:636–647

    Article  Google Scholar 

  • Pereira LG, Cavalett O, Bonomi A, Zhang Y, Warner E, Chum HL (2019) Comparison of biofuel life-cycle GHG emissions assessment tools: the case studies of ethanol produced from sugarcane, corn, and wheat. Renew Sust Energ Rev 110:1–12

    Article  CAS  Google Scholar 

  • Radich T (2015) The flight paths for biojet fuel. Washington, DC, 20585

    Google Scholar 

  • Rahmawati Z, Santoso L, McCue A, Jamari NLA, Ninglasari SY, Gunawan T, Fansuri H (2023) Selectivity of reaction pathways for green diesel production towards biojet fuel applications. RSC Adv 13(20):13698–13714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao P, Rathod V (2019) Valorization of food and agricultural waste: a step towards greener future. Chem Rec 19(9):1858–1871

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Ghazani MS, Zhu H, Ao W, Zhang H, Moreside E, Zhu J, Yang P, Zhong N, Bi X (2022) Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: a review. Appl Energy 315:118970

    Article  CAS  Google Scholar 

  • Richter S, Braun-Unkhoff M, Naumann C, Riedel U (2018) Paths to alternative fuels for aviation. CEAS Aeronaut J 9(3):389–403

    Article  Google Scholar 

  • Roth A, Riegel F, Batteiger V (2018) Potentials of biomass and renewable energy: the question of sustainable availability. Biokerosene: Status and prospects, 95–122

    Google Scholar 

  • dos Santos RG, Alencar AC (2020) Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review. Int J Hydrog Energy 45(36):18114–18132

    Article  Google Scholar 

  • Schorling M, Enders C, Voigt CA (2015) Assessing the cultivation potential of the energy crop Miscanthus× giganteus for Germany. GCB Bioenergy 7(4):763–773

    Article  Google Scholar 

  • Seo MW, Lee SH, Nam H, Lee D, Tokmurzin D, Wang S, Park YK (2022) Recent advances of thermochemical conversion processes for biorefinery. Bioresour Technol 343:126109

    Article  CAS  PubMed  Google Scholar 

  • Shokravi H, Shokravi Z, Heidarrezaei M, Ong HC, Koloor SSR, Petrů M, Lau WJ, Ismail AF (2021) Fourth generation biofuel from genetically modified algal biomass: challenges and future directions. Chemosphere 285:131535

    Article  CAS  PubMed  Google Scholar 

  • Soleimani SS, Adiguzel A, Nadaroglu H (2017) Production of bioethanol by facultative anaerobic bacteria. J Inst Brew 123(3):402–406

    Article  CAS  Google Scholar 

  • Staples MD, Malina R, Suresh P, Hileman JI, Barrett SR (2018) Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy 114:342–354

    Article  CAS  Google Scholar 

  • Stratton R, Wong HM, Hileman J (2010) Life cycle greenhouse gas emissions from alternative jet fuels (No. PARTNER-COE-2010-001). Partnership for Air Transportation Noise and Emissions Reduction

    Google Scholar 

  • Su Y, Zhang P, Su Y (2015) An overview of biofuels policies and industrialization in the major biofuel producing countries. Renew Sust Energ Rev 50:991–1003

    Article  Google Scholar 

  • Sudhakar MP, Kumar BR, Mathimani T, Arunkumar K (2019) A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J Clean Prod 228:1320–1333

    Article  CAS  Google Scholar 

  • Talberg A, Swoboda K (2013) Emissions trading schemes around the world, Department of Parliamentary Services. Retrieved from http://parlinfo.aph.gov.au/parlInfo/download/library/prspub/2501441/upload_binary/2501441.pdf;fileType=application/pdf

  • Tao L, Milbrandt A, Zhang Y, Wang WC (2017) Techno-economic and resource analysis of hydroprocessed renewable jet fuel. Biotechnol Biofuels 10:1–16

    Article  Google Scholar 

  • Tao L, Tan EC, McCormick R, Zhang M, Aden A, He X, Zigler BT (2014) Techno-economic analysis and life-cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and n-butanol. Biofuels Bioprod Biorefin 8(1):30–48

    Article  CAS  Google Scholar 

  • Taylor CE, Baltrus JP, Driscoll D (2011) Fischer-Tropsch fuels. National Energy Technology Laboratory, Golden

    Google Scholar 

  • The Engineering ToolBox (2003) US. Standard atmosphere. Available online at https://www.engineeringtoolbox.com/standard-atmosphere-d_604.html. Accessed 31 March 2019

  • The global aviation industry, I (2010) The right flightpath to reduce aviation emissions. In: UNFCCC Climate Talks

    Google Scholar 

  • Tiwari R, Mishra R, Choubey A, Kumar S, Atabani AE, Badruddin IA, Khan TY (2023) Environmental and economic issues for renewable production of bio-jet fuel: a global prospective. Fuel 332:125978

    Article  CAS  Google Scholar 

  • Total A (2012) Breaking the barriers with break through jet fuel solutions. Berlin Airshow. Berlin

    Google Scholar 

  • US Environmental Protection Agency (2016) EPA determines that aircraft emissions contribute to climate change endangering public health and the environment

    Google Scholar 

  • Vasquez MC, Silva EE, Castillo EF (2017) Hydrotreatment of vegetable oils: a review of the technologies and its developments for jet biofuel production. Biomass Bioenergy 105:197–206

    Article  CAS  Google Scholar 

  • Vijay V, Pimm SL, Jenkins CN, Smith SJ (2016) The impacts of oil palm on recent deforestation and biodiversity loss. PLoS One 11(7):e0159668

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang WC (2016) Techno-economic analysis of a bio-refinery process for producing hydro-processed renewable jet fuel from Jatropha. Renew Energy 95:63–73

    Article  CAS  Google Scholar 

  • Wang M, Dewil R, Maniatis K, Wheeldon J, Tan T, Baeyens J, Fang Y (2019) Biomass-derived aviation fuels: challenges and perspective. Prog Energy Combust Sci 74:31–49

    Article  Google Scholar 

  • Wang WC, Tao L (2016) Bio-jet fuel conversion technologies. Renew Sust Energ Rev 53:801–822

    Article  CAS  Google Scholar 

  • Warshay B, Pan J, Sgouridis S (2011) Aviation industry’s quest for a sustainable fuel: considerations of scale and modal opportunity carbon benefit. Biofuels 2(1):33–58

    Article  CAS  Google Scholar 

  • Wilbrand K (2018) Potential of fossil kerosene. Status and Prospects, Biokerosene, pp 43–57

    Google Scholar 

  • Xie X, Wang M, Han J (2011) Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer− Tropsch diesel from coal and cellulosic biomass. Environ Sci Technol 45(7):3047–3053

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Xin Z, Corscadden K, Niu H (2019) An overview on performance characteristics of bio-jet fuels. Fuel 237:916–936

    Article  CAS  Google Scholar 

  • Yu Y, Wu J, Ren X, Lau A, Rezaei H, Takada M, Bi X, Sokhansanj S (2022) Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: a review. Renew Sust Energ Rev 154:111871

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhati, N., Sharma, A.K. (2024). Sustainability of Biojet Fuel. In: Kuila, A. (eds) Biojet Fuel: Current Technology and Future Prospect. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-99-8783-2_10

Download citation

Publish with us

Policies and ethics