Skip to main content

Hermes: I/O-Efficient Forward-Secure Searchable Symmetric Encryption

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2023 (ASIACRYPT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14443))

  • 332 Accesses

Abstract

Dynamic Symmetric Searchable Encryption (SSE) enables a user to outsource the storage of an encrypted database to an untrusted server, while retaining the ability to privately search and update the outsourced database. The performance bottleneck of SSE schemes typically comes from their I/O efficiency. Over the last decade, a line of work has substantially improved that bottleneck. However, all existing I/O-efficient SSE schemes have a common limitation: they are not forward-secure. Since the seminal work of Bost at CCS 2016, forward security has become a de facto standard in SSE. In the same article, Bost conjectures that forward security and I/O efficiency are incompatible. This explains the current status quo, where users are forced to make a difficult choice between security and efficiency.

The central contribution of this paper it to show that, contrary to what the status quo suggests, forward security and I/O efficiency can be realized simultaneously. This result is enabled by two new key techniques. First, we make use of a controlled amount of client buffering, combined with a deterministic update schedule. Second, we introduce the notion of SSE supporting dummy updates. In combination, those two techniques offer a new path to realizing forward security, which is compatible with I/O efficiency. Our new SSE scheme, \(\textsf{Hermes}\), achieves sublogarithmic I/O efficiency \(\widetilde{\mathcal {O}}\left( {\log \log \frac{N}{p}}\right) \), storage efficiency \(\mathcal {O}\left( 1\right) \), with standard leakage, as well as backward and forward security. Practical experiments confirm that \(\textsf{Hermes}\) achieves excellent performance.

M. Reichle—This work was carried out while the second author was employed by Inria, Paris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although \(\mathcal {O}\left( W\right) \) client storage is inherent to sublogarithmic forward-secure SSE as just noted, in practice, this cost may be too high for some applications. Practical tradeoffs to reduce client storage are discussed in the full version.

  2. 2.

    Our scheme \(\textsf{Hermes}\) can be interpreted as an encrypted multi-map and allows to store other items than just document identifiers. In that case, the client storage becomes \(\mathcal {O}\left( n\cdot W\right) \) bits, where n is the bit-length of the items to be stored.

  3. 3.

    When measuring throughput, Fig. 3 uses the repaired version of IO-DSSE, since the original version is insecure (see full version).

References

  1. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption: optimal locality in linear space via two-dimensional balanced allocations. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 1101–1114. ACM Press, June 2016. https://doi.org/10.1145/2897518.2897562

  2. Asharov, G., Segev, G., Shahaf, I.: Tight tradeoffs in searchable symmetric encryption. J. Cryptol. 34(2), 9 (2021). https://doi.org/10.1007/s00145-020-09370-z

    Article  MathSciNet  Google Scholar 

  3. Axboe, J.: Flexible I/O Tester (2020). https://github.com/axboe/fio

  4. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. In: Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Computing, pp. 593–602 (1994)

    Google Scholar 

  5. Bossuat, A., Bost, R., Fouque, P.-A., Minaud, B., Reichle, M.: SSE and SSD: page-efficient searchable symmetric encryption. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 157–184. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_6

    Chapter  Google Scholar 

  6. Bost, R.: \(\Sigma o \phi o \varsigma \): Forward secure searchable encryption. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1143–1154. ACM Press, October 2016. https://doi.org/10.1145/2976749.2978303

  7. Bost, R., Fouque, P.A.: Security-efficiency tradeoffs in searchable encryption. PoPETs 2019(4), 132–151 (2019). https://doi.org/10.2478/popets-2019-0062

    Article  Google Scholar 

  8. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable encryption from constrained cryptographic primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1465–1482. ACM Press, October/November 2017. https://doi.org/10.1145/3133956.3133980

  9. Cash, D., et al.: Dynamic searchable encryption in very-large databases: data structures and implementation. In: NDSS 2014. The Internet Society, February 2014

    Google Scholar 

  10. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for Boolean queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_20

    Chapter  Google Scholar 

  11. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 351–368. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_20

    Chapter  Google Scholar 

  12. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 79–88. ACM Press, October/November 2006. https://doi.org/10.1145/1180405.1180417

  13. Demertzis, I., Chamani, J.G., Papadopoulos, D., Papamanthou, C.: Dynamic searchable encryption with small client storage. In: ISOC Network and Distributed System Security - NDSS 2022 (2022)

    Google Scholar 

  14. Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable encryption with optimal locality: achieving sublogarithmic read efficiency. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 371–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_13

    Chapter  Google Scholar 

  15. Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp. 1053–1067 (2017)

    Google Scholar 

  16. Etemad, M., Küpçü, A., Papamanthou, C., Evans, D.: Efficient dynamic searchable encryption with forward privacy. In: Proceedings on Privacy Enhancing Technologie - PoPETS 2018 (2018)

    Google Scholar 

  17. Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Learning to reconstruct: statistical learning theory and encrypted database attacks. In: 2019 IEEE Symposium on Security and Privacy, pp. 1067–1083. IEEE Computer Society Press, May 2019. https://doi.org/10.1109/SP.2019.00030

  18. Kamara, S., Moataz, T., Park, A., Qin, L.: A decentralized and encrypted national gun registry. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 1520–1537. IEEE (2021)

    Google Scholar 

  19. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound! In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10992, pp. 523–542. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_18

    Chapter  Google Scholar 

  20. Miers, I., Mohassel, P.: IO-DSSE: scaling dynamic searchable encryption to millions of indexes by improving locality. In: NDSS 2017. The Internet Society, February/March 2017

    Google Scholar 

  21. Minaud, B., Reichle, M.: Dynamic local searchable symmetric encryption. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13510, pp. 91–120. Springer, Lecture Notes in Computer Science (2022). https://doi.org/10.1007/978-3-031-15985-5_4

    Chapter  Google Scholar 

  22. MongoDB: Queryable encryption (2022). https://www.mongodb.com/products/queryable-encryption

  23. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving encrypted databases. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 644–655. ACM Press, October 2015. https://doi.org/10.1145/2810103.2813651

  24. Patranabis, S., Mukhopadhyay, D.: Forward and backward private conjunctive searchable symmetric encryption. In: ISOC Network and Distributed System Security - NDSS 2021 (2021)

    Google Scholar 

  25. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: 2000 IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Computer Society Press, May 2000. https://doi.org/10.1109/SECPRI.2000.848445

  26. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS 2014. The Internet Society, February 2014

    Google Scholar 

  27. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power of file-injection attacks on searchable encryption. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 707–720. USENIX Association, August 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Reichle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Minaud, B., Reichle, M. (2023). Hermes: I/O-Efficient Forward-Secure Searchable Symmetric Encryption. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14443. Springer, Singapore. https://doi.org/10.1007/978-981-99-8736-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8736-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8735-1

  • Online ISBN: 978-981-99-8736-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics