Skip to main content

Central and Directional Multi-neck Knowledge Distillation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14431))

Included in the following conference series:

  • 393 Accesses

Abstract

There are already many mature methods for single-teacher knowledge distillation in object detection models, but the development of multi-teacher knowledge distillation methods has been slow due to the complexity of knowledge fusion among multiple teachers. In this paper, we point out that different teacher models have different detection capabilities for a certain category, and through experiments, we find that for individual target instances, there are differences in the main feature regions of the target, and the detection results also have randomness. Networks that are weak in overall detection performance for a certain category sometimes perform well, so it is not appropriate to simply select the best learning based on detection results. Therefore, we propose a novel multi-teacher distillation method that divides the central and boundary features of the instance target region through the detection of teacher models, and uses clustering to find the center of the response features of each category of teacher models as prior knowledge to guide the learning direction of the student model for the category as a whole. Since our method only needs to calculate the loss on the feature map, FGD can be applied to multiple teachers with the same components. We conducted experiments on various detectors with different backbones, and the results show that our student detector achieved excellent mAP improvement. Our distillation method achieved an mAP of 39.4% on COCO2017 based on the ResNet-50 backbone, which is higher than the single-teacher distillation learning method of the baseline model. Our code and training logs can be obtained at https://github.com/CCCCPRCV/Multi_ Neck.

This work was supported by the Chongqing Academy of Animal Sciences and the Special Project for Technological Innovation and Application Development of Chongqing Municipality (cstc2021jscx-dxwtBX0008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points, arXiv preprint arXiv:1904.07850 (2019)

  2. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part I. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  4. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10 012–10 022 (2021)

    Google Scholar 

  5. Cai, Y., et al.: YOLOv4-5D: an effective and efficient object detector for autonomous driving. IEEE Trans. Instrum. Meas. 70, 1–13 (2021)

    Google Scholar 

  6. Dai, X., et al.: General instance distillation for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7842–7851 (2021)

    Google Scholar 

  7. Tao, X., Zhang, D., Wang, Z., Liu, X., Zhang, H., Xu, D.: Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Trans. Syst. Man Cybernet. Syst. 50(4), 1486–1498 (2018)

    Article  Google Scholar 

  8. Chen, S.-H., Tsai, C.-C.: SMD LED chips defect detection using a YOLOv3-dense model. Adv. Eng. Inform. 47, 101255 (2021)

    Article  Google Scholar 

  9. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  10. Zhang, W., Li, X., Ding, Q.: Deep residual learning-based fault diagnosis method for rotating machinery. ISA Trans. 95, 295–305 (2019)

    Article  Google Scholar 

  11. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861 (2017)

  12. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  13. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  14. Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-grained feature imitation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4933–4942 (2019)

    Google Scholar 

  15. Yang, Z., et al.: Focal and global knowledge distillation for detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4643–4652 (2022)

    Google Scholar 

  16. Tran, L., et al.: Hydra: preserving ensemble diversity for model distillation, arXiv preprint arXiv:2001.04694 (2020)

  17. Liu, Y., Zhang, W., Wang, J.: Adaptive multi-teacher multi-level knowledge distillation. Neurocomputing 415, 106–113 (2020)

    Article  Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  19. Zhang, H., Chang, H., Ma, B., Wang, N., Chen, X.: Dynamic R-CNN: towards high quality object detection via dynamic training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XV. LNCS, vol. 12360, pp. 260–275. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_16

    Chapter  Google Scholar 

  20. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part I. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  21. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  22. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement, arXiv preprint arXiv:1804.02767 (2018)

  23. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  24. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network, arXiv preprint arXiv:1503.02531 (2015)

  25. Mishra, A., Marr, D.: Apprentice: using knowledge distillation techniques to improve low-precision network accuracy, arXiv preprint arXiv:1711.05852 (2017)

  26. Fukuda, T., Suzuki, M., Kurata, G., Thomas, S., Cui, J., Ramabhadran, B.: Efficient knowledge distillation from an ensemble of teachers. In: Interspeech, pp. 3697–3701 (2017)

    Google Scholar 

  27. Guo, J., et al.: Distilling object detectors via decoupled features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2154–2164 (2021)

    Google Scholar 

  28. Tan, X., Ren, Y., He, D., Qin, T., Zhao, Z., Liu, T.-Y.: Multilingual neural machine translation with knowledge distillation, arXiv preprint arXiv:1902.10461 (2019)

  29. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  30. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111, 98–136 (2015)

    Article  Google Scholar 

  31. Chen, K., et al.: MMdetection: open MMLab detection toolbox and benchmark, arXiv preprint arXiv:1906.07155 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J. et al. (2024). Central and Directional Multi-neck Knowledge Distillation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14431. Springer, Singapore. https://doi.org/10.1007/978-981-99-8540-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8540-1_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8539-5

  • Online ISBN: 978-981-99-8540-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics