Skip to main content

Cross-Area Finger Vein Recognition via Hierarchical Sparse Representation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14429))

Included in the following conference series:

  • 361 Accesses

Abstract

The prior studies in finger vein recognition have mainly focused on personal identification based on images with same area. However, the upgrade of finger vein acquisition devices is inevitable, and therefore the scale variation of acquisition windows among various devices may cause the cross-area finger vein recognition problem. To address this problem, a hierarchical sparse representation-based cross-area finger vein recognition method is proposed in this paper. In the proposed method, the first layer locates the potential corresponding regions in each full training image for the small-area testing image based on coding coefficients on the image-specific dictionary, and the small-area testing image is classified in the second layer by its reconstruction error on the compact dictionary. In addition, the method is performed on the original and down-sampled images, and the weighted sum of the reconstruction errors on two kinds of images are used in recognition. The experiments are performed on two widely used finger vein databases, and the experimental results show that the proposed method achieves 91.35% and 78.94% recognition rates on cross-area finger vein recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qin, H., Hu, R., El-Yacoubi, M.A., Li, Y., Gao, X.: Local attention transformer-based full-view finger-vein identification. IEEE Trans. Circuits Syst. Video Technol. 33(6), 2767–2782 (2022)

    Google Scholar 

  2. Li, S., Ma, R., Fei, L., Zhang, B.: Learning compact multirepresentation feature descriptor for finger-vein recognition. IEEE Trans. Inf. Forensics Secur. 17, 1946–1958 (2022)

    Article  Google Scholar 

  3. Yang, L., Liu, X., Yang, G., Wang, J., Yin, Y.: Small-area finger vein recognition. IEEE Trans. Inf. Forensics Secur. 18, 1914–1925 (2023)

    Article  Google Scholar 

  4. Song, Y., Zhao, P., Yang, W., Liao, Q., Zhou, J.: EIFNet: an explicit and implicit feature fusion network for finger vein verification. IEEE Trans. Circuits Syst. Video Technol. 33(5), 2520–2532 (2023)

    Article  Google Scholar 

  5. Shazeeda, S., Rosdi, B.A.: Nearest centroid neighbor based sparse representation classification for finger vein recognition. IEEE Access 7, 5874–5885 (2019)

    Article  Google Scholar 

  6. Shazeeda, S., Rosdi, B.A.: Finger vein recognition using mutual sparse representation classification. IET Biometrics 8(1), 49–58 (2019)

    Article  Google Scholar 

  7. Lei, L., Xi, F., Chen, S., Liu, Z.: A sparse representation denoising algorithm for finger-vein image based on dictionary learning. Multimedia Tools Appl. 80, 15135–15159 (2021)

    Article  Google Scholar 

  8. Mei, X., Ma, H.: Finger vein recognition algorithm based on improved weighted sparse representation. In: International Conference on Information Technology and Computer Application, pp. 6–8. IEEE (2019)

    Google Scholar 

  9. Zhao, P., et al.: Single-sample finger vein recognition via competitive and progressive sparse representation. IEEE Trans. Biometrics Behav. Identity Sci. 5(2), 209–220 (2022)

    Article  MathSciNet  Google Scholar 

  10. Lee, E.C., Jung, H., Kim, D.: New finger biometric method using near infrared imaging. Sensors 11(3), 2319–2333 (2011)

    Google Scholar 

  11. Wang, H., Du, M., Zhou, J., Tao, L.: Weber local descriptors with variable curvature Gabor filter for finger vein recognition. IEEE Access 7, 108261–108277 (2019)

    Google Scholar 

  12. Yang, W., Chen, Z., Qin, C., Liao, Q.: \(\alpha \)-trimmed Weber representation and cross section asymmetrical coding for human identification using finger images. IEEE Trans. Inf. Forensics Secur. 14(1), 90–101 (2019)

    Article  Google Scholar 

  13. Zhang, L., Li, W., Ning, X., Sun, L., Dong, X.: A local descriptor with physiological characteristic for finger vein recognition. In: International Conference on Pattern Recognition, pp. 4873–4878. IEEE (2021)

    Google Scholar 

  14. Liu, H., Yang, G., Yang, L., Su, K., Yin, Y.: Anchor-based manifold binary pattern for finger vein recognition. Sci. China Inf. Sci. 62, 1–16 (2019)

    Google Scholar 

  15. Li, S., Zhang, B., Fei, L., Zhao, S.: Joint discriminative feature learning for multimodal finger recognition. Pattern Recogn. 111, 1–11 (2021)

    Article  Google Scholar 

  16. Yang, J., Shi, Y., Jia, G.: Finger-vein image matching based on adaptive curve transformation. Pattern Recogn. 66, 34–43 (2017)

    Article  Google Scholar 

  17. Yang, L., Yang, G., Yin, Y., Xi, X.: Finger vein recognition with anatomy structure analysis. IEEE Trans. Circuits Syst. Video Technol. 28(8), 1892–1905 (2018)

    Article  Google Scholar 

  18. Qin, H., El-Yacoubi, M.A.: Deep representation-based feature extraction and recovering for finger-vein verification. IEEE Trans. Inf. Forensics Secur. 12(8), 1816–1829 (2017)

    Article  Google Scholar 

  19. Yang, W., Hui, C., Chen, Z., Xue, J.-H., Liao, Q.: FV-GAN: finger vein representation using generative adversarial networks. IEEE Trans. Inf. Forensics Secur. 14(9), 2512–2524 (2019)

    Article  Google Scholar 

  20. Das, R., Piciucco, E., Maiorana, E., Campisi, P.: Convolutional neural network for finger-vein-based biometric identification. IEEE Trans. Inf. Forensics Secur. 14(2), 360–373 (2018)

    Article  Google Scholar 

  21. Xie, C., Kumar, A.: Finger vein identification using convolutional neural network and supervised discrete hashing. Pattern Recogn. Lett. 119, 148–156 (2019)

    Article  Google Scholar 

  22. Shaheed, K., et al.: DS-CNN: a pre-trained Xception model based on depth-wise separable convolutional neural network for finger vein recognition. Expert Syst. Appl. 191, 1–18 (2022)

    Article  Google Scholar 

  23. Huang, J., Zheng, A., Shakeel, M.S., Yang, W., Kang, W.: FVFSNet: frequency-spatial coupling network for finger vein authentication. IEEE Trans. Inf. Forensics Secur. 18, 1322–1334 (2023)

    Google Scholar 

  24. Kumar, A., Zhou, Y.: Human identification using finger images. IEEE Trans. Image Process. 21(4), 2228–2244 (2012)

    Article  MathSciNet  Google Scholar 

  25. Yin, Y., Liu, L., Sun, X.: SDUMLA-HMT: a multimodal biometric database. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds.) CCBR 2011. LNCS, vol. 7098, pp. 260–268. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25449-9_33

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grants 62076151 and 62177031, in part by the Taishan Scholar Project of Shandong Province under Grant tsqn202211182 and Youth Innovation Team of Shandong Province Higher Education Institutions under Grant 2022KJ205, and in part by the Shandong Provincial Natural Science Foundation under Grants ZR2021QF119 and ZR2021MF044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, X., Yang, L., Guo, J., Ma, Y. (2024). Cross-Area Finger Vein Recognition via Hierarchical Sparse Representation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8469-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8468-8

  • Online ISBN: 978-981-99-8469-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics