Skip to main content

MixU-Net: Hybrid CNN-MLP Networks for Urinary Collecting System Segmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14429))

Included in the following conference series:

  • 452 Accesses

Abstract

Segmenting the urinary collecting system based on preoperative contrast-enhanced computed tomography urography volumes is necessary for assisting flexible ureterorenoscopy. The urinary collecting system consists of complex elongated tubular structures and irregular tree-like structures, making it challenging for precise segmentations using current deep-learning-based methods. Existing deep learning-driven methods face challenges in accurately segmenting the urinary collecting system from contrast-enhanced computed tomography urography volumes. In this work, we propose a novel MixU-Net by embedding global feature mix blocks. Particularly, the global feature mix blocks allow wider receptive fields based on fused multi-layer-perception and 3D convolutions across different dimensions. The experimental validations on the clinical computed tomography urography volumes demonstrate that our method achieves state-of-the-art in terms of dice similarity coefficients, intersection over union, and Hausdorff distance when compared with other methods that use pure convolutional neural networks or hybrid convolutional neural networks and Transformers. In addition, preliminary experiments conducted on the navigation system demonstrate the improved accuracy of the virtual depth maps when adopting the segmented urinary collecting system obtained by our MixU-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breda, A., Ogunyemi, O., Leppert, J.T., Schulam, P.G.: Flexible ureteroscopy and laser lithotripsy for multiple unilateral intrarenal stones. Eur. Urol. 55(5), 1190–1197 (2009)

    Article  Google Scholar 

  2. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol. 13803, pp. 205–218. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25066-8_9

  3. Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)

  4. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  5. Cho, S.Y.: Current status of flexible ureteroscopy in urology. Korean J. Urol. 56(10), 680–688 (2015)

    Article  Google Scholar 

  6. Cho, S.Y., et al.: Cumulative sum analysis for experiences of a single-session retrograde intrarenal stone surgery and analysis of predictors for stone-free status. PLoS ONE 9(1), e84878 (2014)

    Article  Google Scholar 

  7. Ding, X., Zhang, X., Han, J., Ding, G.: Scaling up your kernels to 31\(\times \)31: revisiting large kernel design in CNNs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11963–11975 (2022)

    Google Scholar 

  8. Dong, Z., et al.: MNet: rethinking 2D/3D networks for anisotropic medical image segmentation. arXiv preprint arXiv:2205.04846 (2022)

  9. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. El-Melegy, M., Kamel, R., El-Ghar, M.A., Shehata, M., Khalifa, F., El-Baz, A.: Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling. Sci. Rep. 12(1), 18816 (2022)

    Article  Google Scholar 

  11. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol. 12962, pp. 272–284. Springer (2022). https://doi.org/10.1007/978-3-031-08999-2_22

  12. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Heller, N., et al.: The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the kits19 challenge. Med. Image Anal. 67, 101821 (2021)

    Article  Google Scholar 

  15. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)

  16. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  17. Kim, T., et al.: Active learning for accuracy enhancement of semantic segmentation with CNN-corrected label curations: evaluation on kidney segmentation in abdominal CT. Sci. Rep. 10(1), 366 (2020)

    Article  Google Scholar 

  18. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  19. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  20. Miller, N.L., Lingeman, J.E.: Management of kidney stones. Bmj 334(7591), 468–472 (2007)

    Article  Google Scholar 

  21. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  24. Rule, A.D., Bergstralh, E.J., Melton, L.J., Li, X., Weaver, A.L., Lieske, J.C.: Kidney stones and the risk for chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4(4), 804–811 (2009)

    Article  Google Scholar 

  25. Taha, A., Lo, P., Li, J., Zhao, T.: Kid-Net: convolution networks for kidney vessels segmentation from CT-volumes. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 463–471. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_53

    Chapter  Google Scholar 

  26. Tolstikhin, I.O., et al.: MLP-Mixer: An all-MLP architecture for vision. Adv. Neural. Inf. Process. Syst. 34, 24261–24272 (2021)

    Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  28. Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  29. Xia, K.j., Yin, H.s., Zhang, Y.d.: Deep semantic segmentation of kidney and space-occupying lesion area based on SCNN and ResNet models combined with SIFT-flow algorithm. J. Med. Syst. 43, 1–12 (2019)

    Google Scholar 

  30. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 62001403 and 61971367), Natural Science Foundation of Fujian Province of China (No. 2020J05003 and 2020J01004), and the Fujian Provincial Technology Innovation Joint Funds under Grant 2019Y9091

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinran Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z. et al. (2024). MixU-Net: Hybrid CNN-MLP Networks for Urinary Collecting System Segmentation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8469-5_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8468-8

  • Online ISBN: 978-981-99-8469-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics