Skip to main content

Generalized Bargaining Protocols

  • Conference paper
  • First Online:
AI 2023: Advances in Artificial Intelligence (AI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14472))

Included in the following conference series:

  • 538 Accesses

Abstract

Automated Negotiation (AN) is a research field with roots extending back to the mid-twentieth century. There are two dominant AN research directions in recent years: (1) designing new heuristic strategies for the simplest bargaining protocol called the Alternating Offers Protocol (AOP) and (2) defining new mediated protocol that require a trusted third party. Intelligence lies in the strategy in the first direction and the protocol in the latter. This paper argues for a third way that aims at designing unmediated AN protocols with desired properties. We introduce a generalization of AOP to a wide class of unmediated protocols that keep its main advantages while providing the designer with the freedom to design protocols with desired properties. We also introduce the first fruits of this research direction in the form of an unmediated protocol and a corresponding simple strategy that can be shown theoretically to be exactly rational, optimal, and complete for bilateral negotiations with no information about partner’s preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume standard transitivity on preferences.

  2. 2.

    \(a\succcurlyeq _{{}} b\) means that a is not worse than b. Symbols \(\succ _{{}}, \approx _{{}}\) are defined accordingly.

  3. 3.

    If the codomain of \(u_{{}}\) within the range [0, 1], the utility function is called normalized. Time-pressure can be modeled here by a discounting factor as inagent [24].

  4. 4.

    We will drop the scenario superscript when known from the context.

  5. 5.

    We use the Nash [23] and Kalai [13] Bargaining solutions (and ordinal extensions).

  6. 6.

    It can be shown that no agent can benefit from deviating from this tie-breaking strategy.

  7. 7.

    Defined as the product of optimality, completeness, fairness, and welfare.

References

  1. Aydoğan, R., Festen, D., Hindriks, K.V., Jonker, C.M.: Alternating offers protocols for multilateral negotiation. In: Fujita, K., et al. (eds.) Modern Approaches to Agent-based Complex Automated Negotiation. SCI, vol. 674, pp. 153–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51563-2_10

    Chapter  Google Scholar 

  2. Baarslag, T., Elfrink, T., Nassiri Mofakham, F., Koça, T., Kaisers, M., Aydogan, R.: Bargaining chips: coordinating one-to-many concurrent composite negotiations. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp. 390–397 (2021)

    Google Scholar 

  3. Baarslag, T., Gerding, E.H.: Optimal incremental preference elicitation during negotiation. In: IJCAI, pp. 3–9 (2015)

    Google Scholar 

  4. Baarslag, T., Gerding, E.H., Aydogan, R., Schraefel, M.: Optimal negotiation decision functions in time-sensitive domains. In: 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 2, pp. 190–197. IEEE (2015)

    Google Scholar 

  5. Baarslag, T., Hindriks, K., Hendrikx, M., Dirkzwager, A., Jonker, C.: Decoupling negotiating agents to explore the space of negotiation strategies. In: Marsa-Maestre, I., Lopez-Carmona, M.A., Ito, T., Zhang, M., Bai, Q., Fujita, K. (eds.) Novel Insights in Agent-based Complex Automated Negotiation. SCI, vol. 535, pp. 61–83. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-54758-7_4

    Chapter  Google Scholar 

  6. Baarslag, T., Hindriks, K., Jonker, C.: A tit for tat negotiation strategy for real-time bilateral negotiations. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. Studies in Computational Intelligence, vol. 435, pp. 229–233. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30737-9_18

    Chapter  Google Scholar 

  7. Di Giunta, F., Gatti, N.: Bargaining over multiple issues in finite horizon alternating-offers protocol. Ann. Math. Artif. Intell. 47(3), 251–271 (2006)

    Article  MathSciNet  Google Scholar 

  8. Fujita, K., Aydogan, R., Baarslag, T., Hindriks, K., Ito, T., Jonker, C.: ANAC 2016 (2016). https://web.tuat.ac.jp/~katfuji/ANAC2016/

  9. Hao, J., Leung, H.: CUHKAgent: an adaptive negotiation strategy for bilateral negotiations over multiple items. In: Marsa-Maestre, I., Lopez-Carmona, M.A., Ito, T., Zhang, M., Bai, Q., Fujita, K. (eds.) Novel Insights in Agent-based Complex Automated Negotiation. SCI, vol. 535, pp. 171–179. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-54758-7_11

    Chapter  Google Scholar 

  10. de Jonge, D.: An analysis of the linear bilateral ANAC domains using the MiCRO benchmark strategy. In: Proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI) (2022)

    Google Scholar 

  11. Jonge, D., Sierra, C.: NB3: a multilateral negotiation algorithm for large, non-linear agreement spaces with limited time. Auton. Agent. Multi-Agent Syst. 29(5), 896–942 (2015)

    Article  Google Scholar 

  12. Jonker, C.M., Aydogan, R., Baarslag, T., Fujita, K., Ito, T., Hindriks, K.V.: Automated negotiating agents competition (ANAC). In: AAAI, pp. 5070–5072 (2017)

    Google Scholar 

  13. Kalai, E.: Proportional solutions to bargaining situations: interpersonal utility comparisons. Economet. J. Econom. Soc. 1623–1630 (1977)

    Google Scholar 

  14. Kawaguchi, S., Fujita, K., Ito, T.: AgentK2: Compromising Strategy Based on Estimated Maximum Utility for Automated Negotiating Agents. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. SCI, vol. 435, pp. 235–241. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30737-9_19

    Chapter  Google Scholar 

  15. Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Negotiating complex contracts. Group Decis. Negot. 12(2), 111–125 (2003)

    Article  Google Scholar 

  16. Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Protocols for negotiating complex contracts. IEEE Intell. Syst. 18(6), 32–38 (2003)

    Article  Google Scholar 

  17. van Krimpen, T., Looije, D., Hajizadeh, S.: HardHeaded. In: Ito, T., Zhang, M., Robu, V., Matsuo, T. (eds.) Complex Automated Negotiations: Theories, Models, and Software Competitions. SCI, vol. 435, pp. 223–227. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30737-9_17

    Chapter  Google Scholar 

  18. Li, Z., Hadfi, R., Ito, T.: Divide-and-conquer in automated negotiations through utility decomposition. IIAI Lett. Inform. Interdisc. Res. 3 (2023)

    Google Scholar 

  19. Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K., Jonker, C.M.: Genius: an integrated environment for supporting the design of generic automated negotiators. Comput. Intell. 30(1), 48–70 (2014)

    Article  MathSciNet  Google Scholar 

  20. Mohammad, Y.: Concurrent local negotiations with a global utility function: a greedy approach. Auton. Agent. Multi-Agent Syst. 35(2), 1–31 (2021)

    Article  Google Scholar 

  21. Mohammad, Y., Nakadai, S., Greenwald, A.: NegMAS: a platform for situated negotiations. In: Aydoğan, R., Ito, T., Moustafa, A., Otsuka, T., Zhang, M. (eds.) ACAN 2019. SCI, vol. 958, pp. 57–75. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0471-3_4

    Chapter  Google Scholar 

  22. Mori, A., Ito, T.: Atlas3: a negotiating agent based on expecting lower limit of concession function. In: Fujita, K., et al. (eds.) Modern Approaches to Agent-based Complex Automated Negotiation. SCI, vol. 674, pp. 169–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51563-2_11

    Chapter  Google Scholar 

  23. Nash Jr., J.F.: The bargaining problem. Econom. J. Econom. Soc. 155–162 (1950)

    Google Scholar 

  24. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econom. J. Econom. Soc. 97–109 (1982)

    Google Scholar 

  25. Williams, C.R., Robu, V., Gerding, E.H., Jennings, N.R.: Negotiating concurrently with unknown opponents in complex, real-time domains. In: Proceedings of the Twentieth European Conference on Artificial Intelligence, pp. 834–839 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Mohammad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammad, Y. (2024). Generalized Bargaining Protocols. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14472. Springer, Singapore. https://doi.org/10.1007/978-981-99-8391-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8391-9_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8390-2

  • Online ISBN: 978-981-99-8391-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics