Skip to main content

Effect of Interfacial Bonding Characteristics on Electrical Properties of Natural Fiber Reinforced Polymeric Matrix Composite

  • Chapter
  • First Online:
Interfacial Bonding Characteristics in Natural Fiber Reinforced Polymer Composites

Abstract

Neoteric years have seen aaggregatedintrigue in the sphere of natural fibre composites (NFCs) as promising dossier for electrical appositenessdue to their exiguous cost, lightweight, and renewable nature. NFCs offer several ascendancy over immemorial materials, to the same degree asceramic oxides, metals, and synthetic polymers, including ameliorated sustainability, biodegradability, and curtail the environmental impact. NFCs can be engineered to exhibit multifarious electrical attributes, including electrical conductivity, dielectric properties, surface resistivity, volume resistivity and electromagnetic interference (EMI) shielding. Manifold natural fibers like cotton, flax, hemp, jute, wool, silk and sisal have been investigated for their electrical attributes. These fibers can be bestowed in amalgamation with multifarious matrix materials, to the same degree as thermoplastics, thermosets, and biopolymers, to produce NFCs with tailored electrical and mechanical properties. To obtain an optimum electro-mechanical hallmark attributes of the NFCs a tenacious interfacial bonding (IFB) betwixt the matrix and the fibers are required for tight bonding which allows for efficient transfer of charges betwixt the two phases. IFB personates a crucial role in promoting the bonding betwixt the fibers and matrix by limiting the gaps or bereft regions (voids) in the interfacial terminal region that can impede the transfer of electrical charges, resulting in lower electrical conductivity of the composite. To embroider the electrical attributes of NFCs, disparate approaches have been scrutinized, including the accession of conductive fillers or additives, to the same degree as carbon forms (graphene layers and nanotubes),metal nano (in disparate %) particles, and the embodiment of coupling operators to promote interfacial bonding betwixt the natural fibers and matrix. Vast research on the role (execution) of IFB in arbitrating the mechanical attributes of the NFCs are available, but significantly exiguous research was conducted on studying the repercussion of IFB on the electrical attributes of NFCs are reported. This offshoot chapter focuses on the repercussion of IFBs on electrical attributes of NFCs, factors affecting the electrical attributes of NFCs, tests to find out the electrical attributes of NFCs and the approaches to convalesce the IFB to facilitate optimum electrical attributes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Alternative Current

CNTs:

Carbon Nanotubes

DC:

Direct Current

ESD:

Electrostatic Dissipation

IFB:

Interfacial Bonding

EMI shielding:

Electromagnetic Shielding

NFCs:

Natural Fiber Composites

PVDF:

Polyvinylidene Fluoride

PZT:

Lead zirconate Titanate

SE:

Shielding Effect

References

  1. Sreenivas HT, Krishnamurthy N, Arpitha GR (2020) A comprehensive review on light weight kenaf fiber for automobiles. Int J Light Mater Manuf 3:328–337. https://doi.org/10.1016/j.ijlmm.2020.05.003

    Article  Google Scholar 

  2. ThyavihalliGirijappa YG et al (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front Mater 6.https://doi.org/10.3389/fmats.2019.00226

  3. Karimah A, Ridho MR, Munawar SS, Adi DS, Ismadi RD, Subiyanto B, Fatriasari W, Fudholi A (2021) A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. J Mater Res Technol 2442–2458. https://doi.org/10.1016/j.jmrt.2021.06.014

  4. Huda MK, Widiastuti I (2021) J Phys Conf Ser 1808:012015. https://doi.org/10.1088/1742-6596/1808/1/012015

  5. Kim YK (2012) Natural fibre composites (NFCs) for construction and automotive industries. In Kozłowski RM (ed) Handbook of natural fibres. Woodhead Publishing, pp 254–279. https://doi.org/10.1533/9780857095510.2.254

  6. Hoffmann HG, Haag K, Müssig J (2021) Biomimetic approaches towards lightweight composite structures for car interior parts. Mater Des 212. Article 110281. https://doi.org/10.1016/j.matdes.2021.110281

  7. Hari Prashanth PVS et al (2021) IOP Conf Ser Mater Sci Eng 1136:012008. https://doi.org/10.1088/1757-899X/1136/1/012008

  8. Abed A et al (2020) IOP Conf Ser Mater Sci Eng 827:012019. https://doi.org/10.1088/1757-899X/827/1/012019

  9. Krishnasamy P, Muralidharan B, Govindasamy R, Subramanian J et al (2022) Investigation of natural fiber composite in EMI shielding under the influence of hematite and rice husk ash filler. SAE Technical Paper 2022–28–0588. https://doi.org/10.4271/2022-28-0588

  10. Zhu P, Liu Y, Fang Z, Kuang Y, Zhang Y, Peng C, Chen G (2019) Langmuir 35(14):4834–4842.https://doi.org/10.1021/acs.langmuir.8b04259

  11. Sundeep D et al (2022) Surf Topogr Metrol Prop 10:015028. https://doi.org/10.1088/2051-672X/ac5780

  12. Shuai C, Zan J, Yang Y, Peng S, Yang W, Qi F, Shen L, Tian Z (2020) Surface modification enhances interfacial bonding in PLLA/MgO bone scaffold. Mater Sci Eng C Mater Biol Appl 108:110486. https://doi.org/10.1016/j.msec.2019.110486

    Article  CAS  Google Scholar 

  13. Mohammed L, Ansari MNM, Pua G, Jawaid M, Saiful Islam M (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015. https://doi.org/10.1155/2015/243947

  14. Parameswaranpillai J et al (2022) Advances in epoxy/synthetic/natural fiber composites. In: MavinkereRangappa S, Parameswaranpillai J, Siengchin S, Thomas S (eds) Handbook of epoxy/fiber composites. Springer, Singapore. https://doi.org/10.1007/978-981-19-3603-6_52

  15. DeArmitt C (2011) Functional fillers for plastics. Kutz M (ed) Applied plastics engineering handbook: processing and materials, first ed. William Andrew, Oxford, pp. 455–468. https://doi.org/10.1016/B978-1-4377-3514-7.10026-1

  16. Penn LS, Chiao TT (1982) Epoxy resins. In: Lubin G (eds) Handbook of composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7139-1_5

  17. Weatherhead RG (1980) Polyester resins. In: FRP technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8721-0_9

  18. Launikitis MB (1982) Vinyl ester resins. In: Lubin G (eds) Handbook of composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7139-1_3

  19. Xu J, Liu X, Fu S (2022) Bio-based epoxy resin from gallic acid and its thermosets toughened with renewable tannic acid derivatives. J Mater Sci 57:9493–9507. https://doi.org/10.1007/s10853-022-07174-z

    Article  CAS  Google Scholar 

  20. Sun P et al (2021) Super electrical insulating materials based on honeycomb-inspired nanostructure: high electrical strength and low permittivity and dielectric loss. Adv Electron Mater 8(4):2100979. https://doi.org/10.1002/aelm.202100979

    Article  CAS  Google Scholar 

  21. Varun K, Manan G (2021) Comparative study of different natural fibre printed circuit board (PCB) composites. Mater Today Proc 44:2097–2101. https://doi.org/10.1016/j.matpr.2020.12.182

  22. Géczy A, Farkas C, Kovács R, Froš D, Veselý P, Bonyár A (2022) Biodegradable and nanocomposite materials as printed circuit substrates: a mini-review. IEEE Open J Nanotechnol 3:182–190. https://doi.org/10.1109/OJNANO.2022.3221273

    Article  Google Scholar 

  23. Tahir H et al (2021) Composite. Interface Sci Technol 211–278. https://doi.org/10.1016/b978-0-12-818805-7.00004-7

  24. Tolinski M (2015) Additives for modifying electrical properties. Addit Polyolefins 57–67. https://doi.org/10.1016/b978-0-323-35884-2.00006-5

  25. Jarząbek DM (2018) The impact of weak interfacial bonding strength on mechanical properties of metal matrix–ceramic reinforced composites. Compos Struct 201:352–362. https://doi.org/10.1016/j.compstruct.2018.06.071

    Article  Google Scholar 

  26. Shi S, Yang C, Nie M (2017) Enhanced interfacial strength of natural fiber/polypropylene composite with mechanical-interlocking interface. ACS Sustain Chem Eng 5(11):10413–10420. https://doi.org/10.1021/acssuschemeng.7b02448

    Article  CAS  Google Scholar 

  27. Ali A, Shaker K, Nawab Y et al (2018) Hydrophobic treatment of natural fibers and their composites—a review. J Ind Text 47(8):2153–2183. https://doi.org/10.1177/1528083716654468

    Article  CAS  Google Scholar 

  28. Zhi D et al (2021) A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos B Eng 211. https://doi.org/10.1016/j.compositesb.2021.108642

  29. Ashby MF, Jones DR (2012) The physical basis of young’s modulus. Eng Mater 1:83–93. https://doi.org/10.1016/b978-0-08-096665-6.00006-4

    Article  Google Scholar 

  30. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos B Eng 101:31–45. https://doi.org/10.1016/j.compositesb.2016.06.055

    Article  CAS  Google Scholar 

  31. Chung DDL (2000) Fibrous composite interfaces studied by electrical resistance measurement. Adv Eng Mater 2(12):788–796. https://doi.org/10.1002/1527-2648(200012)2:12<788::aid-adem788>3.0.co;2-j

  32. Mueller DH (2004) Improving the impact strength of natural fiber reinforced composites by specifically designed material and process parameters. Int Nonwovens J os-13(4). https://doi.org/10.1177/1558925004os-1300405

  33. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  34. Ouarhim W, Zari N, Bouhfid R, Qaiss AEK (2019) Mechanical performance of natural fibers–based thermosetting composites. Mech Phys Test Biocompos Fibre Reinf Compos Hybrid Compos 43–60.https://doi.org/10.1016/b978-0-08-102292-4.00003-5

  35. Idicula M, Boudenne A, Umadevi L, Ibos L, Candau Y, Thomas S (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol 66(15):2719–2725. https://doi.org/10.1016/j.compscitech.2006.03.007

  36. Jayamani E, Anil Nair G, Soon K (2020) Investigation of the dielectric properties of natural fibre and conductive filler reinforced polymer composites. Mater Today Proceed 22:162–171. https://doi.org/10.1016/j.matpr.2019.08.032

    Article  CAS  Google Scholar 

  37. Naik JB, Mishra S (2005) Studies on electrical properties of natural fiber: HDPE composites. Polym Plast Technol Eng 44(4):687–693. https://doi.org/10.1081/pte-200057818

  38. Kamarudin SH, Mohd Basri MS, Rayung M, Abu F, Ahmad S, Norizan MN, Osman S, Sarifuddin N, Desa MSZM, Abdullah UH, Mohamed Amin Tawakkal IS, Abdullah LC (2022) A review on natural fiber reinforced polymer composites (NFRPC) for sustainable industrial applications. Polymers 14:3698. https://doi.org/10.3390/polym14173698

  39. Hixson A, Woo L, Campo M et al (2001) Intrinsic conductivity of short conductive fibers in composites by impedance spectroscopy. J Electroceram 7:189–195. https://doi.org/10.1023/A:1014487129118

    Article  CAS  Google Scholar 

  40. Shavandi A, Ali MA (2019) Graft polymerization onto wool fibre for improved functionality. Prog Org Coat 130:182–199. https://doi.org/10.1016/j.porgcoat.2019.01.054

    Article  CAS  Google Scholar 

  41. Pham T, Bechtold T (2020) Conductive fibers. Handb Fibrous Mater 233–262.https://doi.org/10.1002/9783527342587.ch9

  42. Kim H, Yi JY, Kim BG, Song JE, Jeong HJ, Kim HR (2020) Development of cellulose-based conductive fabrics with electrical conductivity and flexibility. Plos One 15(6):e0233952. https://doi.org/10.1371/journal.pone.0233952

  43. Kane S, Ulrich R, Harrington A, Stadie NP, Ryan C (2021) Physical and chemical mechanisms that influence the electrical conductivity of lignin-derived biochar. Carbon Trends 5:100088. https://doi.org/10.1016/j.cartre.2021.100088

  44. Chen R, Tang H, Dai Y, Zong W, Zhang W, He G, Wang X (2022) Robust bioinspired MXene–hemicellulose composite films with excellent electrical conductivity for multifunctional electrode applications. ACS Nano 16(11):19124–19132. https://doi.org/10.1021/acsnano.2c08163

  45. Rosenberg B (1962) Electrical conductivity of proteins. Nature 193(4813):364–365.https://doi.org/10.1038/193364a0

  46. Kendall K (1990) Electrical conductivity of ceramic powders and pigments. Powder Technol 62(2):147–154. https://doi.org/10.1016/0032-5910(90)80078-d

  47. Peijs T (2018) 6.7 Electrospun polymer nanofibers and their composites. Compr Compos Mater II:162–200. https://doi.org/10.1016/b978-0-12-803581-8.10025-6

    Article  CAS  Google Scholar 

  48. Antlauf M, Boulanger N, Berglund L, Oksman K, Andersson O (2021) Thermal conductivity of cellulose fibers in different size scales and densities. Biomacromolecules 22(9):3800–3809. https://doi.org/10.1021/acs.biomac.1c00643

  49. Bajpai P (2018) Bleaching and pulp properties calculations. Biermann’s Handb Pulp Paper 509–525.https://doi.org/10.1016/b978-0-12-814240-0.00021-5

  50. AL-Oqla FM, Sapuan S, Anwer T, Jawaid M, Hoque M (2015) Natural fiber reinforced conductive polymer composites as functional materials: a review. Synthetic Metals 206:42–54.https://doi.org/10.1016/j.synthmet.2015.04.014

  51. Jayamani E, Hamdan S, Rahman MR, Bakri MKB (2014) Comparative study of dielectric properties of hybrid natural fiber composites. Proced Eng 97:536–544. https://doi.org/10.1016/j.proeng.2014.12.280

    Article  CAS  Google Scholar 

  52. Sreekumar P, Saiter JM, Joseph K, Unnikrishnan G, Thomas S (2012) Electrical properties of short sisal fiber reinforced polyester composites fabricated by resin transfer molding. Compos Part A Appl Sci Manuf 43(3):507–511. https://doi.org/10.1016/j.compositesa.2011.11.018

  53. Lu X, Qu H, Skorobogatiy M (2017) Piezoelectric microstructured fibers via drawing of multimaterial preforms. Sci Rep 7:2907. https://doi.org/10.1038/s41598-017-01738-9

    Article  CAS  Google Scholar 

  54. Frederick ER (1980) Fibers, electrostatics, and filtration: a review of new technology. J Air Pollut Control Assoc 30(4):426–431. https://doi.org/10.1080/00022470.1980.10465971

    Article  CAS  Google Scholar 

  55. Li W, Guo F, Wei X, Du Y, Chen Y (2020) Preparation of Ni/C porous fibers derived from jute fibers for high-performance microwave absorption. Preparation of Ni/C porous fibers derived from jute fibers for high-performance microwave absorption-RSC advances (RSC Publishing).https://doi.org/10.1039/D0RA06817A

  56. Lau KT, Hung PY, Zhu MH, Hui D (2018) Properties of natural fibre composites for structural engineering applications. Compos B Eng 136:222–233. https://doi.org/10.1016/j.compositesb.2017.10.038

    Article  CAS  Google Scholar 

  57. Zhao Q, Zhang K, Zhu S, Xu H, Cao D, Zhao L, Zhang R, Yin W (2019) Review on the electrical resistance/conductivity of carbon fiber reinforced polymer. Appl Sci 9:2390. https://doi.org/10.3390/app9112390

    Article  CAS  Google Scholar 

  58. Macdonald JR (1992) Impedance spectroscopy. Ann Biomed Eng 20:289–305. https://doi.org/10.1007/BF02368532

    Article  CAS  Google Scholar 

  59. Hari Prashanth PVS et al (2021) IOP Conf Ser Mater Sci Eng 1136:012008. https://doi.org/10.1088/1757-899X/1136/1/012008

  60. Kasap S, Koughia C, Ruda H, Johanson R (2006) Electrical cond\uction in metals and semiconductors. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-29185-7_2

  61. Johari GP (1993) Electrical properties of epoxy resins. In: Ellis B (eds) Chemistry and technology of epoxy resins. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2932-9_6

  62. Chen X, Bao R, Yi J, Fang D, Tao J, Liu Y (2019) Enhancing interfacial bonding and tensile strength in CNT-Cu composites by a synergetic method of spraying pyrolysis and flake powder metallurgy. Materials (Basel) 12(4):670. https://doi.org/10.3390/ma12040670

    Article  CAS  Google Scholar 

  63. Prashanth P, Jayamani E, Soon K, Wong Y (2021) Determination of dielectric properties of natural fiber reinforced polymer composite using adaptive neuro fuzzy inference system. Materialwissenschaft Und Werkstofftechnik 52(10):1035–1047. https://doi.org/10.1002/mawe.202000304

  64. Asmatulu R, Venishetty B, Asmatulu E (2009) Non-destructive testing of fiber reinforced composite materials using a capacitance bridge. Volume 11: Mechanics of solids, structures and fluids. https://doi.org/10.1115/imece2009-12335

  65. Todoroki A, Kurokawa H, Mizutani Y, Matsuzaki R, Yasuoka T (2014) Self-sensing time domain reflectometry method for damage monitoring of a CFRP plate using a narrow-strip transmission line. Compos B Eng 58:59–65. https://doi.org/10.1016/j.compositesb.2013.10.047

    Article  CAS  Google Scholar 

  66. Li Z, Haigh A, Soutis C, Gibson A, Wang P (2019) A review of microwave testing of glass fibre-reinforced polymer composites. Nondestruct Test Eval 34(4):429–458. https://doi.org/10.1080/10589759.2019.1605603

  67. Dimitrov KC, Song S, Chang H, Lim T, Lee Y, Kwak B-J (2020) Interdigital capacitor-based passive LC resonant sensor for improved moisture sensing. Sensors 20:6306. https://doi.org/10.3390/s20216306

    Article  Google Scholar 

  68. Sarker F, Karim N, Afroj S, Koncherry V, Novoselov KS, Potluri P (2018) High-performance graphene-based natural fiber composites. ACS Appl Mater Interfaces 10(40):34502–34512. https://doi.org/10.1021/acsami.8b13018

  69. Mohajerani A, Hui SQ, Mirzababaei M, Arulrajah A, Horpibulsuk S, Abdul Kadir A, Rahman MT, Maghool F (2019) Amazing types, properties, and applications of fibres in construction materials. Materials (Basel) 12(16):2513. https://doi.org/10.3390/ma12162513

    Article  CAS  Google Scholar 

  70. Chandra H, Allen SW, Oberloier SW, Bihari N, Gwamuri J, Pearce JM (2017) Open-source automated mapping four-point probe. Materials 10:110. https://doi.org/10.3390/ma10020110

    Article  Google Scholar 

  71. Oliveira FS, Cipriano RB, da Silva FT et al (2020) Simple analytical method for determining electrical resistivity and sheet resistance using the van der Pauw procedure. Sci Rep 10:16379. https://doi.org/10.1038/s41598-020-72097-1

    Article  CAS  Google Scholar 

  72. Bonaldi R (2018) Electronics used in high-performance apparel—part ½. High-Perform Appar 245–284.https://doi.org/10.1016/b978-0-08-100904-8.00014-6

  73. Reddy PL, Deshmukh K, Pasha SKK (2022) Dielectric properties of epoxy/natural fiber composites. In: MavinkereRangappa S, Parameswaranpillai J, Siengchin S, Thomas S (eds) Handbook of epoxy/fiber composites. Springer, Singapore. https://doi.org/10.1007/978-981-19-3603-6_23

  74. Kalimuldina G, Turdakyn N, Abay I, Medeubayev A, Nurpeissova A, Adair D, Bakenov Z (2020) A review of piezoelectric PVDF film by electrospinning and its applications. Sensors (Basel) 20(18):5214. https://doi.org/10.3390/s20185214

    Article  CAS  Google Scholar 

  75. Zhao Y, Wang L, Liao Q, Xie S, Kang B, Cao H (2021) Temperature characteristics testing and modifying of piezoelectric composites. Microelectron Eng 242–243, 111533. https://doi.org/10.1016/j.mee.2021.111533

  76. Nair SS, Wang S, Hurley DC (2010) Nanoscale characterization of natural fibers and their composites using contact-resonance force microscopy. Compos Part A Appl Sci Manuf 41(5):624–631. https://doi.org/10.1016/j.compositesa.2010.01.009

  77. Mayrhofer P, Wistrela E, Schneider M, Bittner A, Schmid U (2016) Precise determination of d 33 and d 31 from piezoelectric deflection measurements and 2D FEM simulations applied to Sc x Al 1–x N. Proced Eng 168:876–879. https://doi.org/10.1016/j.proeng.2016.11.295

    Article  CAS  Google Scholar 

  78. Sherrit S, Djrbashian A, Bradford SC (2013) Analysis of the impedance resonance of piezoelectric multi-fiber composite stacks. SPIE Proceedings. https://doi.org/10.1117/12.2009056

  79. Derusova DA, Vavilov VP, Druzhinin NV, Shpil’noi VY, Pestryakov AN (200) Detecting defects in composite polymers by using 3D scanning laser doppler vibrometry. Materials 15:7176. https://doi.org/10.3390/ma15207176

  80. Tahir H, Saad M, Shafi N, Muslim F (2021) Composite. Interface Sci Technol 211–278.https://doi.org/10.1016/b978-0-12-818805-7.00004-7

  81. Guo L, Bashir T, Bresky E, Persson NK (2016) Electroconductive textiles and textile-based electromechanical sensors—integration in as an approach for smart textiles. Smart Text Appl 657–693.https://doi.org/10.1016/b978-0-08-100574-3.00028-x

  82. Ramanujam B, Annamalai PK (2017) Conducting polymer–graphite binary and hybrid composites. Hybrid Polym Compos Mater 1–34.https://doi.org/10.1016/b978-0-08-100785-3.00001-2

  83. Ramawat KG, Ahuja MR (2016) Fiber plants: an overview. In: Ramawat K, Ahuja M (eds) Fiber plants. Sustainable development and biodiversity, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-44570-0_1

  84. PejakSimunec D, Sola A (2022) Emerging research in conductive materials for fused filament fabrication: a critical review. Adv Eng Mater 24(7):2101476. https://doi.org/10.1002/adem.202101476

  85. Sood B, Pecht M (2018) The effect of epoxy/glass interfaces on CAF failures in printed circuit boards. Microelectron Reliab 82:235–243. https://doi.org/10.1016/j.microrel.2017.10.027

    Article  CAS  Google Scholar 

  86. Karger-Kocsis J, Mahmood H, Pegoretti A (2015) Recent advances in fiber/matrix interphase engineering for polymer composites. Prog Mater Sci 73:1–43. https://doi.org/10.1016/j.pmatsci.2015.02.003

    Article  CAS  Google Scholar 

  87. Todd MG, Shi FG (2003) Molecular basis of the interphase dielectric properties of microelectronic and optoelectronic packaging materials. IEEE Trans Compon Packag Technol 26(3):667–672. https://doi.org/10.1109/TCAPT.2003.817862

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors acknowledge the Director and the Department of Electronics and Communication Engineering and Department of Mechanical Engineering, Indian Institute of Information Technology Design and Manufacturing Kurnool for providing the relevant information for drafting this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dola Sundeep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sundeep, D., Varadharaj, E.K., Sastry, C.C. (2024). Effect of Interfacial Bonding Characteristics on Electrical Properties of Natural Fiber Reinforced Polymeric Matrix Composite. In: Krishnasamy, S., Hemath Kumar, M., Parameswaranpillai, J., Mavinkere Rangappa, S., Siengchin, S. (eds) Interfacial Bonding Characteristics in Natural Fiber Reinforced Polymer Composites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-8327-8_12

Download citation

Publish with us

Policies and ethics