Skip to main content

Interactions Between Arbuscular Mycorrhizal Fungi and Other Microorganisms in the Rhizosphere and Hyphosphere

  • Chapter
  • First Online:
Arbuscular Mycorrhizal Fungi and Higher Plants

Abstract

The ecosystem of the earth is fascinating and intricate. The interactions that occur in the soil affect its characteristics as a substrate for development and activity of soil microorganisms and plants. The majority of terrestrial plants have a symbiotic, mutually beneficial interaction with the soil fungi known as arbuscular mycorrhizal fungi (AMF). These microorganisms expand the root’s absorption region, which improves the plant’s ability to absorb nutrients. The symbiont gets plant carbohydrates in return for accomplishing its life cycle. Additionally, AMF aids in the adaptation of plants to biotic and abiotic challenges including salt, drought, extremely high or low temperatures, heavy metals, diseases and infections. AMF are constantly interacting with ample variety of microbes, including endo-bacteria, rhizobacteria that encourage plant growth and mycorrhiza helper bacteria, plant parasitic nematodes, fungi and other microbes inhabiting the rhizosphere and hyphosphere. Their interactions may be of utmost significance and might affect agriculture. The present chapter summarizes the main microbial community groups and their interaction with AMF in the rhizosphere and hyphosphere along with the advantageous effects of AMF on plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aalipour H, Nikbakht A, Etemadi N, Rejali F, Soleimani M (2020) Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Sci Hortic 261:108923

    CAS  Google Scholar 

  • Abo-Korahv M, Yassin A (2022) Effect of different bioagents on the population density of Meloidogyne incognita infected tomato plants. Egypt J Agron 21(1):14–22

    Google Scholar 

  • Adeyemi NO, Atayese MO, Sakariyawo OS, Azeez JO, Sobowale SPA, Olubode A, Mudathir R, Adebayo R, Adeoye S (2021) Alleviation of heavy metal stress by arbuscular mycorrhizal symbiosis in Glycine max (L.) grown in copper, lead and zinc contaminated soils. Rhizosphere 18:100325

    Google Scholar 

  • Afshar AS, Abbaspour H (2023) Mycorrhizal symbiosis alleviate salinity stress in pistachio plants by altering gene expression and antioxidant pathways. Physiol Mol Biol Plants 29(2):263–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alabid I, Glaeser SP, Kogel KH (2019) Endofungal bacteria increase fitness of their host fungi and impact their association with crop plants. Curr Issues Mol Biol 30(1):59–74

    PubMed  Google Scholar 

  • Alamri S, Nafady NA, El-Sagheer AM, El-Aal MA, Mostafa YS, Hashem M, Hassan EA (2022) Current utility of arbuscular mycorrhizal fungi and hydroxyapatite nanoparticles in suppression of Tomato Root-Knot Nematode. Agronomy 12(3):671

    CAS  Google Scholar 

  • Albornoz FE, Prober SM, Ryan MH, Standish RJ (2022) Ecological interactions among microbial functional guilds in the plant-soil system and implications for ecosystem function. Plant Soil 476(1-2):301–313

    CAS  Google Scholar 

  • Aljawasim BD, Khaeim HM, Manshood MA (2020) Assessment of arbuscular mycorrhizal fungi (Glomus spp.) as potential biocontrol agents against damping-off disease Rhizoctoniasolani on cucumber. J Crop Prot 9:141–147

    Google Scholar 

  • Amer MA, Abou-El-Seoud II (2008) Mycorrhizal fungi and Trichoderma harzianum as biocontrol agents for suppression of Rhizoctonia solani damping-off disease of tomato. Commun Agric Appl Biol Sci 73(2):217–232

    CAS  PubMed  Google Scholar 

  • Ames RN, Mihara KL, Bayne HG (1989) Chitin-decomposing actinomycetes associated with a vesicular–arbuscular mycorrhizal fungus from a calcareous soil. New Phytol 111(1):67–71

    Google Scholar 

  • Arruda B, George PB, Robin A, de Mescolotti D, Herrera WF, Jones DL, Andreote FD (2021) Manipulation of the soil microbiome regulates the colonization of plants by arbuscular mycorrhizal fungi. Mycorrhiza 31(5):545–558

    CAS  PubMed  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8(1):1–10

    CAS  PubMed  Google Scholar 

  • Ashmrita M, Radha S (2017) Blue-green algal biofertilizer and growth response of rice plants. Int J Plant Sci 12:68–71

    Google Scholar 

  • Bagyaraj DJ, Sridhar KR, Revanna A (2022) Arbuscular mycorrhizal fungi influence crop productivity, plant diversity, and ecosystem services. In: Rajpal VR, Singh I, Navi SS (eds) Fungal diversity, ecology and control management. Fungal biology. Springer, Singapore, pp 345–362

    Google Scholar 

  • Banuelos J, Martínez-Romero E, Montaño NM, Camargo-Ricalde SL (2023) Rhizobium tropici and riboflavin amendment condition arbuscular mycorrhiza colonization in Phaseolus vulgaris L. Agronomy 13(3):876

    CAS  Google Scholar 

  • Bao X, Zou J, Zhang B, Wu L, Yang T, Huang Q (2022) Arbuscular mycorrhizal fungi and microbes’ interaction in rice mycorrhizosphere. Agronomy 12:1277

    CAS  Google Scholar 

  • Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 7(1):4686

    PubMed  PubMed Central  Google Scholar 

  • Becker WN (1976) Quantification of onion vesicular-arbuscular mycorrhizae and their resistance to Pyrenochaeta terrestris. University of Illinois at Urbana-Champaign, Champaign, p 7624041

    Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068

    PubMed  PubMed Central  Google Scholar 

  • Begum N, Xiao Y, Wang L, Li D, Irshad A, Zhao T (2023) Arbuscular mycorrhizal fungus Rhizophagus irregularis alleviates drought stress in soybean with overexpressing the GmSPL9d gene by promoting photosynthetic apparatus and regulating the antioxidant system. Microbiol Res 273:127398

    CAS  PubMed  Google Scholar 

  • Bennett AE, Groten K (2022) The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annu Rev Plant Biol 73:649–672

    CAS  PubMed  Google Scholar 

  • Berliner R, Torrey JG (1989) On tripartite Frankia-mycorrhizal associations in the Myricaceae. Can J Bot 67:1708–1712

    Google Scholar 

  • Beura K, Pradhan AK, Ghosh GK, Kohli A, Singh M (2020) Root architecture, yield and phosphorus uptake by rice: response to rock phosphate enriched compost and microbial inoculants. Int Res J Pure Appl Chem 21(19):33–39

    Google Scholar 

  • Bharadwaj DP, Lundquist PO, Alström S (2008) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biol Biochem 40(10):2494–2501

    CAS  Google Scholar 

  • Bhardwaj AK, Chandra KK, Kumar R (2023) Water stress changes on AMF colonization, stomatal conductance and photosynthesis of Dalbergia sissoo seedlings grown in entisol soil under nursery condition. For Sci Technol 19:47–58

    Google Scholar 

  • Bianciotto V, Bandi CD, Minerdi M, Sironi H, Tichy V, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62(1):3005–3010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bidondo LF, Silvani V, Colombo R, Pérgola M, Bompadre J, Godeas A (2011) Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol Biochem 43(9):1866–1872

    CAS  Google Scholar 

  • Boer WD, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29(4):795–811

    PubMed  Google Scholar 

  • Bonfante P, Desirò A (2017) Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME J 8:1727–1735

    Google Scholar 

  • Bonfante P, Venice F (2020) Mucoromycota: going to the roots of plant-interacting fungi. Fungal Biol Rev 34(2):100–113

    Google Scholar 

  • Bubici G, Kaushal M, Prigigallo MI, Gómez-Lama Cabanás C, Mercado-Blanco J (2019) Biological control agents against fusarium wilt of banana. Front Microbiol 10:616

    PubMed  PubMed Central  Google Scholar 

  • Budi SW, Bakhtiar Y, May NL (2012) Bacteria associated with arbuscular mycorrhizal spores Gigaspora margarita and their potential for stimulating root mycorrhizal colonization and neem (Melia azedarach Linn) seedling growth. Microbiol Indones 6(4):6–6

    Google Scholar 

  • Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27(11):1445–1451

    CAS  Google Scholar 

  • Chandrasekaran M, Boopathi T, Manivannan P (2021) Comprehensive assessment of ameliorative effects of AMF in alleviating abiotic stress in tomato plants. J Fungi 7(4):303

    CAS  Google Scholar 

  • Chang C, Nasir F, Ma L, Tian C (2017) Molecular communication and nutrient transfer of arbuscular mycorrhizal fungi, symbiotic nitrogen-fixing bacteria, and host plant in tripartite symbiosis. In: Sulieman S, Tran LSP (eds) Legume nitrogen fixation in soils with low phosphorus availability: adaptation and regulatory implication. Springer, Cham, pp 169–183

    Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Front Plant Sci 9:1270

    PubMed  PubMed Central  Google Scholar 

  • Chen W, Mou X, Meng P, Chen J, Tang X, Meng G, Xin K, Zhang Y, Wang C (2023a) Effects of arbuscular mycorrhizal fungus inoculation on the growth and nitrogen metabolism of Catalpa bungei CA Mey. under different nitrogen levels. Front Plant Sci 14:1138184

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Aili Y, Ma X, Wang H, Dawuti M (2023b) Mycorrhizal fungal colonization promotes apparent growth and physiology of Alhagi sparsifolia seedlings under salt or drought stress at vulnerable developmental stage. Plant Growth Regul 2023:1–12

    CAS  Google Scholar 

  • Chen D, Saeed M, Ali MNHA, Raheel M, Ashraf W, Hassan Z, Farooq U, Hakim MF, Rao MJ, Negm S (2023c) Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi combined application reveals enhanced soil fertility and rice production. Agronomy 13(2):550

    CAS  Google Scholar 

  • da Silva Campos MA (2020) Bioprotection by arbuscular mycorrhizal fungi in plants infected with Meloidogyne nematodes: a sustainable alternative. Crop Prot 135:105203

    Google Scholar 

  • da Silva Campos MA, da Silva FSB, Yano-Melo AM, de Melo NF, Pedrosa EMR, Maia L (2013) Responses of guava plants to inoculation with arbuscular mycorrhizal fungi in soil infested with Meloidogyne enterolobii. Plant Pathol J 29(3):242

    Google Scholar 

  • da Silva Campos MA, da Silva FSB, Yano-Melo AM, de Melo NF, Maia LC (2017) Application of arbuscular mycorrhizal fungi during the acclimatization of Alpinia purpurata to induce tolerance to Meloidogyne arenaria. Plant Pathol J 33(3):32

    Google Scholar 

  • Dehne HW (1982) Interaction between vesicular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Desirò A, Naumann M, Epis S, Novero M, Bandi C, Genre A, Bonfante P (2013) Mollicutes-related endobacteria thrive inside liverwort-associated arbuscular mycorrhizal fungi. Environ Microbiol 15(3):822–836

    PubMed  Google Scholar 

  • Desirò A, Faccio A, Kaech A, Bidartondo MI, Bonfante P (2015) Endogone, one of the oldest plant-associated fungi, host unique mollicutes-related endobacteria. New Phytol 205(4):1464–1472

    PubMed  Google Scholar 

  • Detrey J, Cognard V, Djian-Caporalino C, Marteu N, Doidy J, Pourtau N, Vriet C, Maurousset L, Bouchon D, Clause J (2022) Growth and root-knot nematode infection of tomato are influenced by mycorrhizal fungi and earthworms in an intercropping cultivation system with leeks. Appl Soil Ecol 169:104181

    Google Scholar 

  • Dey M, Ghosh S (2022) Arbuscular mycorrhizae in plant immunity and crop pathogen control. Rhizosphere 13:100524

    Google Scholar 

  • Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S (2020) Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12(10):370

    CAS  Google Scholar 

  • Dowarah B, Gill SS, Agarwala N (2021) Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. J Plant Growth Regul 44:1429–1444

    Google Scholar 

  • Duponnois R, Diédhiou S, Chotte J, Sy MO (2003) Relative importance of the endomycorrhizal and (or) ectomycorrhizal associations in Allocasuarina and Casuarina genera. Can J Microbiol 49:281–287

    CAS  PubMed  Google Scholar 

  • Eke P, Adamou S, Fokom R, Nya VD, Fokou PVT, Wakam LN, Nwaga D, Boyom FF (2020) Arbuscular mycorrhizal fungi alter antifungal potential of lemongrass essential oil against Fusarium solani, causing root rot in common bean (Phaseolus vulgaris L.). Heliyon 6:e05737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elumalai S, Raaman N (2009) In vitro synthesis of Frankia and mycorrhiza with Casuarina equisetifolia and ultrastructure of root system. Indian J Exp Biol 47:289–297

    PubMed  Google Scholar 

  • Emmanuel OC, Babalola OO (2020) Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiol Res 239:126569

    CAS  PubMed  Google Scholar 

  • Eshaghi Gorgi O, Fallah H, Niknejad Y, Barari Tari D (2022) Effect of plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi inoculations on essential oil in Melissa officinalis l. under drought stress. Biologia 77:11–20

    CAS  Google Scholar 

  • Faghihinia M, Jansa J, Halverson LJ, Staddon PL (2023) Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns. Biol Fertil Soils 59(1):17–34

    CAS  Google Scholar 

  • Filion MM, Arnaud S, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    PubMed  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    PubMed  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2010) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. J Appl Microbiol 108(1):236–245

    CAS  PubMed  Google Scholar 

  • Geisen S, Quist CW (2021) Microbial-faunal interactions in the rhizosphere. In: Gupta VVSR, Sharma AK (eds) Rhizosphere biology: interactions between microbes and plants. Springer, Singapore, pp 237–253

    Google Scholar 

  • Ghorchiani M, Etesami H, Alikhani HA (2018) Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric Ecosyst Environ 258:59–70

    CAS  Google Scholar 

  • Gough EC, Owen KJ, Zwart RS, Thompson JP (2022) The role of nutrients underlying interactions among root-nodule bacteria (Bradyrhizobium sp.), arbuscular mycorrhizal fungi (Funneliformis mosseae) and root-lesion nematodes (Pratylenchus thornei) in nitrogen fixation and growth of mung bean (Vigna radiata). Plant Soil 472(1-2):421–449

    CAS  Google Scholar 

  • Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 239–262

    Google Scholar 

  • Gupta SK, Chakraborty AP (2020) Mycorrhiza helper bacteria: future prospects. Int J Res Rev 7(3):387–391

    Google Scholar 

  • Guzman A, Montes M, Hutchins L, DeLaCerda G, Yang P, Kakouridis A, Dahlquist-Willard RM, Firestone MK, Bowles T, Kremen C (2021) Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytol 231:447–459

    PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Schmid M, Tuinen DV, Berg G (2008) Plant-driven selection of microbes. Plant Soil 321:235–257

    Google Scholar 

  • Hashem A, Alqarawi AA, Al-Huqail AA, AbdAllah EF (2018) Biodiversity of arbuscular mycorrhizal fungi associated with Acacia gerrardii Benth in different habitats of Saudi Arabia. Pak J Bot 50(3):1211–1217

    CAS  Google Scholar 

  • Hassani M, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6(1):1–7

    Google Scholar 

  • Herrera-Parra E, Ramos-Zapata J, Basto-Pool C, Cristóbal-Alejo J (2021) Sweet pepper (Capsicum annuum) response to the inoculation of native arbuscular mycorrhizal fungi and the parasitism of root-knot Meloidogyne incognita. Rev Bio Cien 8:E0071020

    Google Scholar 

  • Holste EK, Kobe RK, Gehring CA (2017) Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. Mycorrhiza 27:211–223

    CAS  PubMed  Google Scholar 

  • Hoseinzade H, Ardakani MR, Shahdi A, Rahmani HA, Noormohammadi G, Miransari M (2016) Rice (Oryza sativa L.) nutrient management using mycorrhizal fungi and endophytic Herbaspirillum seropedicae. J Integr Agric 15(6):1385–1394

    CAS  Google Scholar 

  • Husna H, Tuheteru FD, Albasri A, Arif A, Basrudin B, Nurdin WR, Safitri I (2022) Diversity of arbuscular mycorrhizal fungi of kalappiacelebica: an endemic and endangered plant species in Sulawesi, Indonesia. Biodivers J Biol Divers 23(10):5290–5297

    Google Scholar 

  • Innocenti G, Sabatini MA (2018) Collembola and plant pathogenic, antagonistic and arbuscular mycorrhizal fungi: a review. Bull Insectol 71:71–76

    Google Scholar 

  • Jamiołkowska A, Księżniak A, Hetman B, Kopacki M, Skwaryło-Bednarz B, Gałązka A, Thanoon AH (2017) Interactions of arbuscular mycorrhizal fungi with plants and soil microflora. Acta Sci Pol Hortorum Cultus 16(5):89–95

    Google Scholar 

  • Jia B, Diao F, Ding S, Shi Z, Xu J, Hao L, Li FY, Guo W (2023) Differential effects of arbuscular mycorrhizal fungi on three salt-tolerant grasses under cadmium and salt stress. Land Degrad Dev 34(2):506–520

    Google Scholar 

  • Jiménez-Pérez M, Morales-Manzo II, Ana FITA, Rodríguez-Burruezo A (2022) Mitigation of drought stress in solanaceae vegetables through symbiosis with plant growth-promoting bacteria and arbuscular mycorrhizal fungi. A review. Sci J 11:86

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48(1):1–13

    CAS  PubMed  Google Scholar 

  • Kaur S, Suseela V (2020) Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites 10(8):35

    Google Scholar 

  • Kaur R, Sharma N, Tikoria R, Ali M, Kour S, Kumar D, Ohri P (2022) Insights into biosynthesis and signaling of cytokinins during plant growth, development and stress tolerance. In: Aftab T (ed) Auxins, cytokinin and gibberellins signaling in plants. Springer, Cham, pp 153–187

    Google Scholar 

  • Kramer S, Dibbern D, Moll J, Huenninghaus M, Koller R, Krueger D, Marhan S, Urich T, Wubet T, Bonkowski M, Buscot F (2016) Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. Front Microbiol 7:1524

    PubMed  PubMed Central  Google Scholar 

  • Kuang Y, Li X, Wang Z, Wang X, Wei H, Chen H, Hu W, Tang M (2023) Effects of arbuscular mycorrhizal fungi on the growth and root cell ultrastructure of eucalyptus grandis under cadmium stress. J Fungi 9(2):140

    CAS  Google Scholar 

  • Kumar D, Ohri P (2023) Say “NO” to plant stresses: unravelling the role of nitric oxide under abiotic and biotic stress. Nitric Oxide 130:36–57

    CAS  PubMed  Google Scholar 

  • Kumar D, Manhas RK, Ohri P (2023) Deciphering the growth promoting and stress curtailing role of nitric oxide in Meloidogyne incognita infested Solanum lycopersicum seedlings. Sci Hortic 319:112147

    CAS  Google Scholar 

  • Lanfranco L, Bonfante P, Genre A (2016) The mutualistic interaction between plants and arbuscular mycorrhizal fungi. Microbiol Spectr 4(6):4–6

    Google Scholar 

  • Lasudee K, Tokuyama S, Lumyong S, Pathom-Aree W (2018) Actinobacteria associated with arbuscular mycorrhizal Funneliformis mosseae spores, taxonomic characterization and their beneficial traits to plants: evidence obtained from mung bean (Vigna radiata) and Thai jasmine rice (Oryza sativa). Front Microbiol 9:1247

    PubMed  PubMed Central  Google Scholar 

  • Lesueur D, Duponnois R (2005) Relations between rhizobial nodulation and root colonization of Acacia crassicarpa provenances by an arbuscular mycorrhizal fungus, Glomus intraradices Schenk and Smith or an ectomycorrhizal fungus, Pisolithus tinctorius Coker & Couch. Ann Sci 62:467–474

    Google Scholar 

  • Li X, Wang Y, Guo P, Zhang Z, Cui X, Hao B, Guo W (2023a) Arbuscular mycorrhizal fungi facilitate Astragalus adsurgens growth and stress tolerance in cadmium and lead contaminated saline soil by regulating rhizosphere bacterial community. Appl Soil Ecol 187:104842

    Google Scholar 

  • Li W, Chen K, Li Q, Tang Y, Jiang Y, Su Y (2023b) Effects of arbuscular mycorrhizal fungi on alleviating cadmium stress in Medicago truncatula Gaertn. Plan Theory 12(3):547

    CAS  Google Scholar 

  • Lies A, Delteil A, Prin Y, Duponnois R (2018) Using mycorrhiza helper microorganisms (MHM) to improve the mycorrhizal efficiency on plant growth. In: Meena V (ed) Role of rhizospheric microbes in soil. Springer, Singapore, pp 277–298

    Google Scholar 

  • Linderman RG (1988) Mycorrhizal interaction with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Liu L, Huang X, Zhang J, Cai Z, Jiang K, Chang Y (2020) Deciphering the relative importance of soil and plant traits on the development of rhizosphere microbial communities. Soil Biol Biochem 148:107909

    CAS  Google Scholar 

  • Liu CY, Hao Y, Wu XL, Dai FJ, Abd-Allah EF, Wu QS, Liu SR (2023a) Arbuscular mycorrhizal fungi improve drought tolerance of tea plants via modulating root architecture and hormones. Plant Growth Regul 2023:1–10

    Google Scholar 

  • Liu MY, Li QS, Ding WY, Dong LW, Deng M, Chen JH, Tian X, Haashem A, Al-Arjani AF, Alenazi MM, Abd-Allah EF, Wu QS (2023b) Arbuscular mycorrhizal fungi inoculation impacts expression of aquaporins and salt overly sensitive genes and enhances tolerance of salt stress in tomato. Chem Biol Technol Agric 10(1):5

    CAS  Google Scholar 

  • Liu H, Zhang J, Zhang L, Zhang X, Yang R (2023c) Funneliformis mosseae influences leaf decomposition by altering microbial communities under saline-alkali conditions. Sci Total Environ 23:165079

    Google Scholar 

  • Long L, Lin Q, Yao Q, Zhu H (2017) Population and function analysis of cultivable bacteria associated with spores of arbuscular mycorrhizal fungus Gigaspora margarita. 3 Biotech 7(1):8

    PubMed  PubMed Central  Google Scholar 

  • Lu C, Zhang Z, Guo P, Wang R, Liu T, Luo J, Hao B, Wang Y, Guo W (2023) Synergistic mechanisms of bioorganic fertilizer and AMF driving rhizosphere bacterial community to improve phytoremediation efficiency of multiple HMs-contaminated saline soil. Sci Total Environ 883:163708

    CAS  PubMed  Google Scholar 

  • Lumini E, Bosco M, Puppi G, Isopi R (1994) Field performance of Alnus cordata Loisel (Italian alder) inoculated with Frankia and VA-mycorrhizal strains in mine-spoil afforestation plots. Soil Biol Biochem 26:659–661

    Google Scholar 

  • Lv Y, Liu J, Fan Z, Fang M, Xu Z, Ban Y (2023) The function and community structure of arbuscular mycorrhizal fungi in ecological floating beds used for remediation of Pb contaminated wastewater. Sci Total Environ 872:162233

    CAS  PubMed  Google Scholar 

  • Malar CM, Wang Y, Stajich JE, Kokkoris V, Villeneuve-Laroche M, Yildirir G, Corradi N (2022) Early branching arbuscular mycorrhizal fungus Paraglomus occultum carries a small and repeat-poor genome compared to relatives in the Glomeromycotina. Microb Genom 8(4):000810

    CAS  Google Scholar 

  • Malviya D, Singh P, Singh UB, Paul S, Bisen PK, Rai JP, Verma RL, Fiyaz RA, Kumar A, Kumari P, Dei S, Ahmed MR, Bagyaraj DJ, Singh HV (2023) Arbuscular mycorrhizal fungi-mediated activation of plant defense responses in direct seeded rice (Oryza sativa L.) against root-knot nematode Meloidogyne graminicola. Front Microbiol 14:1104490

    PubMed  PubMed Central  Google Scholar 

  • Marro N, Caccia M, Doucet ME, Cabello M, Becerra A, Lax P (2018) Mycorrhizas reduce tomato root penetration by false root-knot nematode Nacobbus aberrans. Appl Soil Ecol 124:262–265

    Google Scholar 

  • Medina A, Probanza A, Mañero FG, Azcón R (2003) Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl Soil Ecol 22(1):15–28

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    CAS  PubMed  Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    CAS  PubMed  Google Scholar 

  • Miransari M, Abrishamchi A, Khoshbakht K, Niknam V (2014) Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit Rev Biotechnol 34(2):123–133

    CAS  PubMed  Google Scholar 

  • Mitra D, Panneerselvam P, Senapati A, Chidambaranathan P, Nayak AK, Mohapatra PKD (2023) Arbuscular mycorrhizal fungi response on soil phosphorus utilization and enzymes activities in aerobic rice under phosphorus-deficient conditions. Lifestyles 13(5):1118

    CAS  Google Scholar 

  • Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Kuyper TW, Boonlue S (2020) Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L. Sci Rep 10:4916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nafady NA, Sultan R, El-Zawahry AM, Mostafa YS, Alamri S, Mostafa RG, Hashem M, Hassan EA (2022) Effective and promising strategy in management of tomato root-knot nematodes by Trichoderma harzianum and arbuscular mycorrhizae. Agronomy 12(2):315

    CAS  Google Scholar 

  • Naito M, Desirò A, González JB, Tao G, Morton JB, Bonfante P, Pawlowska TE (2017) ‘Candidatus Moeniiplasma glomeromycotorum’, an endobacterium of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 5:1177–1184

    Google Scholar 

  • Nanjundappa A, Bagyaraj DJ, Saxena AK, Kumar M, Chakdar H (2019) Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol Biotechnol 6:1–10

    Google Scholar 

  • Neville J, Tessier J, Morrison I, Scarratt J (2002) Soil depth distribution of ecto-and arbuscular mycorrhizal fungi associated with Populus tremuloides within a 3-year-old boreal forest clear-cut. Appl Soil 19:209–216

    Google Scholar 

  • Noceto PA, Bettenfeld P, Boussageon R, Hériché M, Sportes A, van Tuinen D, Courty PE, Wipf D (2021) Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. Mycorrhiza 31(6):655–669

    PubMed  Google Scholar 

  • Noroozi N, Mohammadi G, Ghobadi M (2023) Some physio-biochemical traits of sunflower (Helianthus annuus L.) as affected by arbuscular mycorrhizal fungi inoculation under different irrigation treatments. Ital J Agron 18:1

    Google Scholar 

  • Norouzinia F, Ansari MH, Aminpanah H, Firozi S (2020) Alleviation of soil salinity on physiological and agronomic traits of rice cultivars using Arbuscular mycorrhizal fungi and Pseudomonas strains under field conditions. Rev Agric Neotrop 7(1):25–42

    Google Scholar 

  • Ojha SK, Benjamin JC, Singh AK (2018) Role on biofertilizer (blue green algae) in paddy crop. J Pharmacogn Phytochem 7:830–832

    CAS  Google Scholar 

  • Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 103:1155–1166

    CAS  PubMed  Google Scholar 

  • Olsson S, Bonfante P, Pawlowska TE (2017) Ecology and evolution of fungal-bacterial interactions. In: Dighton T, White JF (eds) The fungal community its organization and role in the ecosystem. CRC Press, Boca Raton, pp 563–584

    Google Scholar 

  • Ould AS, Aliat T, Kucher DE, Bensaci OA, Rebouh NY (2023) Investigating the potential of arbuscular mycorrhizal fungi in mitigating water deficit effects on durum wheat (Triticum durum Desf.). Agriculture 13(3):552

    Google Scholar 

  • Panneerselvam P, Kumar U, Sugitha TCK, Parameswaran C, Sahoo S, Binodh AK, Jahan A, Anandan A (2017) Arbuscular mycorrhizal fungi (AMF) for sustainable rice production. In: Adhya T, Mishra B, Annapurna K, Verma D, Kumar U (eds) Advances in soil microbiology: recent trends and future prospects. Springer, Singapore, pp 99–126

    Google Scholar 

  • Parihar M, Meena VS, Mishra PK, Rakshit A, Choudhary M, Yadav RP, Rana K, Bisht JK (2019) Arbuscular mycorrhiza: a viable strategy for soil nutrient loss reduction. Arch Microbiol 201:723–735

    CAS  PubMed  Google Scholar 

  • Patel HK, Jhala YK, Raghunandan BL, Solanki JP (2022) Role of mycorrhizae in plant-parasitic nematodes management. In: Soni R, Suyal DC, Yadav AN, Goel R (eds) Trends of applied microbiology for sustainable economy. Academic Press, New York, pp 225–251

    Google Scholar 

  • Pawlowski ML, Hartman GL (2020) Impact of arbuscular mycorrhizal species on Heterodera glycines. Plant Dis 104(9):2406–2410

    CAS  PubMed  Google Scholar 

  • Pham TT, Giang BL, Nguyen NH, Dong Yen PN, Minh Hoang VD, Lien Ha BT, Le NTT (2020) Combination of mycorrhizal symbiosis and root grafting effectively controls nematode in replanted coffee soil. Plan Theory 9(5):555

    CAS  Google Scholar 

  • Pires D, Vicente CS, Menéndez E, Faria JM, Rusinque L, Camacho MJ, Inácio ML (2022) The fight against plant-parasitic nematodes: Current status of bacterial and fungal biocontrol agents. Pathogens 11(10):1178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poveda J, Abril-Urias P, Escobar C (2020) Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front Microbiol 11:992

    PubMed  PubMed Central  Google Scholar 

  • PremKumari SM, Prabina BJ (2017) Impact of the mixed consortium of indigenous arbuscular mycorrhizal fungi (AMF) on the growth and yield of rice (Oryza sativa L.) under the system of rice intensification (SRI). Int J Environ Agric Biotechnol 2(2):238743

    Google Scholar 

  • Priyadharsini P, Rojamala K, Ravi RK, Muthuraja R, Nagaraj K, Muthukumar T (2016) Mycorrhizosphere: the extended rhizosphere and its significance. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 97–124

    Google Scholar 

  • Qin S, Feng WW, Wang TT, Ding P, Xing K, Jiang JH (2017) Plant growth-promoting effect and genomic analysis of the beneficial endophyte Streptomyces sp. KLBMP 5084 isolated from halophyte Limonium sinense. Plant Soil 416:117–132

    CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(8):305–339

    CAS  Google Scholar 

  • Rillig MC, Lehmann A, Lehmann J, Camenzind T, Rauh C (2018) Soil biodiversity effects from field to fork. Trends Plant Sci 23(1):17–24

    CAS  PubMed  Google Scholar 

  • Rodrigues MT, Calandrelli A, Miamoto A, Rinaldi LK, Pereira Moreno B, da Silva C, Dias-Arieira CR (2021) Pre-inoculation with arbuscular mycorrhizal fungi affects essential oil quality and the reproduction of root lesion nematode in Cymbopogon citratus. Mycorrhiza 31:613–623

    Google Scholar 

  • Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71(11):6673–6679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Lozano JM, Bonfante P (2000) A Burkholderia strain living inside the arbuscular mycorrhizal fungus Gigaspora margarita possesses the vacB gene, which is involved in host cell colonization by bacteria. Microb Ecol 39(2):137–144

    CAS  PubMed  Google Scholar 

  • Ryan MH, Graham JH (2018) Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol 220(4):1092–1107

    PubMed  Google Scholar 

  • Sagar A, Rathore P, Ramteke PW, Ramakrishna W, Reddy MS, Pecoraro L (2021) Plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their synergistic interactions to counteract the negative effects of saline soil on agriculture: Key macromolecules and mechanisms. Microorganisms 9(7):1491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, Bonfante P (2016) Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 10(1):130–144

    CAS  PubMed  Google Scholar 

  • Samal BK, Mahalik JK, Dash BK, Patasani J (2018) Effect of interaction between Arbuscular mycorrhizal fungi (Glomus fasciculatum) and root knot nematode (Meloidogyne incognita) on tomato. Ann Plant Prot Sci 26(2):355–359

    Google Scholar 

  • Sangwan S, Prasanna R (2022) Mycorrhizae helper bacteria: unlocking their potential as bioenhancers of plant–arbuscular mycorrhizal fungal associations. Microb Ecol 84(1):1–10

    PubMed  Google Scholar 

  • Sanon A, Andrianjaka ZN, Prin Y, Bally R, Thioulouse J, Comte G, Duponnois R (2009) Rhizosphere microbiota interfers with plant-plant interactions. Plant Soil 321:259–278

    CAS  Google Scholar 

  • Sarkar AK, Sadhukhan S (2023) Unearthing the alteration in plant volatiles induced by mycorrhizal fungi: a shield against plant pathogens. Physiol Plant 175(1):e13845

    CAS  PubMed  Google Scholar 

  • Saxena J, Saini A, Ravi I, Chandra S, Garg V (2015) Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum). J Crop Improv 29(3):353–369

    CAS  Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    PubMed  PubMed Central  Google Scholar 

  • Sedhupathi K, Kennedy ZJ, Shanthi A (2022) Interaction of arbuscular fungus (Rhizophagus irregularis), Bacillus subtilis and Purpureocillium lilacinum against root-knot nematode (Meloidogyne incognita) in tomato. Indian J Nematol 52(1):92–103

    Google Scholar 

  • Séry DJM, Kouadjo ZC, Voko BR, Zeze A (2016) Selecting native arbuscular mycorrhizal fungi to promote cassava growth and increase yield under field conditions. Front Microbiol 7:2063

    PubMed  PubMed Central  Google Scholar 

  • Shanthi A (2019) Arbuscular mycorrhizal (AM) fungi for management of root knot Nematode, Meloidogyne incognita on Tomato. Ann Plant Prot Sci 27(2):257–260

    Google Scholar 

  • Shanthi A, Arun A, Shandeep SG (2022) Studies on histopathological changes in the tomato roots colonized by arbuscular mycorhizal fungus, Rhizophagus intraradices and infested by root knot nematodes, Meloidogyne incognita. Ann Plant Prot Sci 30(2):91–96

    Google Scholar 

  • Sharma IP, Sharma AK (2017) Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode. Symbiosis 71(3):175–183

    CAS  Google Scholar 

  • Sharma M, Saini I, Kaushik P, Aldawsari MM, Al Balawi T, Alam P (2021) Mycorrhizal fungi and Pseudomonas fluorescens application reduces root-knot nematode (Meloidogyne javanica) infestation in eggplant. Saudi J Biol Sci 28(7):3685–3691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma N, Khanna K, Jasrotia S, Kumar D, Bhardwaj R, Ohri P (2023) Metabolites and chemical agents in the plant roots: an overview of their use in plant-parasitic nematode management. Nematology 25(3):243–257

    CAS  Google Scholar 

  • Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    PubMed  Google Scholar 

  • Slimani A, Harkousse O, Mazri MA, Zouahri A, Ouahmane L, Koussa T, Al Feddy MN (2022) Impact of a selected mycorrhizal complex and a rhizobacterial species on tomato plants’ growth under water stress conditions. Indian J Agric Res 56(6):696–704

    Google Scholar 

  • Sohrabi F, Sheikholeslami M, Heydari R, Rezaee S, Sharifi R (2017) Study on combined application of arbuscular mycorrhizal fungi isolates and plant growth promoting rhizobacteria in controlling root-knot nematode Meloidogyne javanica in tomato under greenhouse conditions. Iranian J Plant Pathol 53(4):449–462

    Google Scholar 

  • Steinkellner S, Hage-Ahmed K, García-Garrido JM, Illana A, Ocampo JA, Vierheilig H (2012) A comparison of wild-type, old and modern tomato cultivars in the interaction with the arbuscular mycorrhizal fungus Glomus mosseae and the tomato pathogen Fusarium oxysporum f. sp. lycopersici. Mycorrhiza 22:189–194

    PubMed  Google Scholar 

  • Stratton CA, Ray S, Bradley BA, Kaye JP, Ali JG, Murrell EG (2022) Nutrition vs association: plant defenses are altered by arbuscular mycorrhizal fungi association not by nutritional provisioning alone. BMC Plant Biol 22(1):1–10

    Google Scholar 

  • Sudhasha S, Balabaskar P, Sivakumar T, Sanjeev KK, Kannan R, Venkatesh KL (2020) Constructiveness of the biocontrol agents on Fusarial wilt of tomato incited by the destructive pathogen Fusarium oxysporum f. sp. lycopersici. In: Current research and innovations in plant pathology. AkiNik Publications, Delhi, pp 4–8

    Google Scholar 

  • Szili-Kovács T, Takács T (2023) Advanced research of rhizosphere microbial activity. Agriculture 13(4):911

    Google Scholar 

  • Taktek S, Trépanier M, Servin PM, St-Arnaud M, Piché Y, Fortin JA, Antoun H (2015) Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198. Soil Biol Biochem 90:1–9

    CAS  Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Koljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159

    Google Scholar 

  • Teste FP, Jones MD, Dickie IA (2020) Dual-mycorrhizal plants: their ecology and relevance. New Phytol 225(5):1835–1851

    PubMed  Google Scholar 

  • Thangavel P, Anjum NA, Muthukumar T, Sridevi G, Vasudhevan P, Maruthupandian A (2022) Arbuscular mycorrhizae: natural modulators of plant–nutrient relation and growth in stressful environments. Arch Microbiol 204(5):264

    CAS  PubMed  Google Scholar 

  • Tian C, He X, Zhong Y, Chen J (2003) Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New For 25:125–131

    Google Scholar 

  • Tiwari S, Pandey S, Chauhan PS, Pandey R (2017) Biocontrol agents in co-inoculation manages root knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] and enhances essential oil content in Ocimumbasilicum L. Ind Crop Prod 97:292–301

    Google Scholar 

  • Udo IA, Uko AE, Obok EE, Ubi JO, Umoetok SB (2022) Management of Meloidogyne incognita and salinity on sweet pepper (Capsicum annuum L.) with different arbuscular mycorrhizal fungus species. J Appl Biol Biotechnol 10(4):66–72

    CAS  Google Scholar 

  • Udo IA, Akpan JF, Bello OS, Otie VO (2023) Arbuscular mycorrhizal fungus species differed in bio-control potential on pepper genotypes infected with Meloidogyne incognita. Int J Veg Sci 2023:1–14

    Google Scholar 

  • Uehling J, Gryganskyi A, Hameed K, Tschaplinski T, Misztal PK, Wu S, Desirò A, Vande Pol N, Du Z, Zienkiewicz A, Zienkiewicz K (2017) Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environ Microbiol 19(8):2964–2983

    CAS  PubMed  Google Scholar 

  • Vallejos-Torres G, Espinoza E, Marín-Díaz J, Solis R, Arévalo LA (2021) The role of arbuscular mycorrhizal fungi against root-knot nematode infections in coffee plants. J Soil Sci Plant Nutr 21(1):364–373

    CAS  Google Scholar 

  • Vishwakarma SK, Ilyas T, Malviya D, Shafi Z, Shahid M, Yadav B, Singh UB, Rai JP, Singh HB, Singh HV (2022) Arbuscular mycorrhizal fungi (AMF) as potential biocontrol agents. In: Singh UB, Sahu PK, Singh HV, Sharma PK, Sharma SK (eds) Rhizosphere microbes: biotic stress management. Springer, Singapore, pp 197–222

    Google Scholar 

  • Vocciante M, Grifoni M, Fusini D, Petruzzelli G, Franchi E (2022) The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Appl Sci 12(3):1231

    CAS  Google Scholar 

  • Wahid F, Sharif M, Shah F, Ali A, Adnan M, Shah S, Danish S, Ali MA, Ahmed N, Arslan H, Arslan D (2022) Mycorrhiza and phosphate solubilizing bacteria: potential bioagents for sustainable phosphorus management in agriculture. Phyton 91(2):257

    Google Scholar 

  • Wang W, Xu L, Liu R (2017) Effects of combined inoculation with various arbuscular mycorrhizal fungi on plant resistance to root-knot nematode disease in cucumber. Mycosystema 36(7):1010–1017

    Google Scholar 

  • Wang F, Zhang L, Zhou J, Rengel Z, George TS, Feng G (2022) Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: processes and ecological functions. Plant Soil 481(1-2):1–22

    CAS  Google Scholar 

  • Wang G, Jin Z, George TS, Feng G, Zhang L (2023a) Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. New Phytol. https://doi.org/10.1111/nph.18772

  • Wang Y, Chen H, Shao M, Zhu T, Li S, Olsson PA, Hammer EC (2023b) Arbuscular mycorrhizal fungi trigger danger-associated peptide signaling and inhibit carbon–phosphorus exchange with nonhost plants. Plant Cell Environ. https://doi.org/10.1111/pce.14600

  • Wang Y, Dong F, Chen H, Xu T, Tang M (2023c) Effects of arbuscular mycorrhizal fungus on sodium and chloride ion channels of Casuarina glauca under salt stress. Int J Mol Sci 24(4):3680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Chen X, Tang Z (2023d) Arbuscular mycorrhizal symbioses improved biomass allocation and reproductive investment of cherry tomato after root-knot nematodes infection. Plant Soil 482(1-2):513–527

    CAS  Google Scholar 

  • Wani KA, Manzoor J, Shuab R, Lone R (2017) Arbuscular mycorrhizal fungi as biocontrol agents for parasitic nematodes in plants. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer, Cham, pp 195–210

    Google Scholar 

  • Wei LI, Zhai Y-L, Xing H-S, Xing L-J, Guo S-X (2023a) Arbuscular mycorrhizal fungi promote photosynthesis in Antirrhinum majus L. under low-temperature and weak-light conditions. Not Bot Horti Agrobot Cluj-Napoca 51(1):13012–13012

    Google Scholar 

  • Wei Z, Sixi Z, Xiuqing Y, Guodong X, Baichun W, Baojing G (2023b) Arbuscular mycorrhizal fungi alter rhizosphere bacterial community characteristics to improve Cr tolerance of Acorus calamus. Ecotoxicol Environ Saf 253:114652

    CAS  PubMed  Google Scholar 

  • Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223(3):1127–1142

    CAS  PubMed  Google Scholar 

  • Xavier LJ, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35(3):471–478

    CAS  Google Scholar 

  • Yang H, Zang Y, Yuan Y, Tang J, Chen X (2012) Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evol Biol 12:1–13

    Google Scholar 

  • Yang S, Imran, Ortas I (2023) Impact of mycorrhiza on plant nutrition and food security. J Plant Nutr 2023:1–26

    CAS  Google Scholar 

  • Yilmaz A, Yildirim E, Yilmaz H, Soydemir HE, Güler E, Ciftci V, Yaman M (2023) Use of arbuscular mycorrhizal fungi for boosting antioxidant enzyme metabolism and mitigating saline stress in sweet basil (Ocimumbasilicum L.). Sustainability 15(7):5982

    CAS  Google Scholar 

  • Yooyongwech S, Tisarum R, Samphumphuang T, Phisalaphong M, Cha-Um S (2023) Integrated strength of osmotic potential and phosphorus to achieve grain yield of rice under water deficit by arbuscular mycorrhiza fungi. Sci Rep 13(1):5999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li S, Li H, Wang R, Zhang K, Xu J (2020) Fungi-nematode interactions: diversity, ecology, and biocontrol prospects in agriculture. J Fungi 6:206

    Google Scholar 

  • Zhang H, Li L, Ren W, Zhang W, Tang M, Chen H (2022) Arbuscular mycorrhizal fungal colonization improves growth, photosynthesis, and ROS regulation of split-root poplar under drought stress. Acta Physiol Plant 44(6):62

    Google Scholar 

  • Zhang B, Shi F, Zheng X, Pan H, Wen Y, Song F (2023a) Effects of AMF compound inoculants on growth, ion homeostasis, and salt tolerance-related gene expression in Oryza sativa L. under salt treatments. Rice 16(1):1–18

    Google Scholar 

  • Zhang M, Shi Z, Lu S, Wang F (2023b) AMF inoculation alleviates molybdenum toxicity to maize by protecting leaf performance. J Fungi 9(4):479

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puja Ohri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, D. et al. (2024). Interactions Between Arbuscular Mycorrhizal Fungi and Other Microorganisms in the Rhizosphere and Hyphosphere. In: Ahammed, G.J., Hajiboland, R. (eds) Arbuscular Mycorrhizal Fungi and Higher Plants. Springer, Singapore. https://doi.org/10.1007/978-981-99-8220-2_3

Download citation

Publish with us

Policies and ethics