Skip to main content

Modeling Online Adaptive Navigation in Virtual Environments Based on PID Control

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

It is well known that locomotion-dominated navigation tasks may highly provoke cybersickness effects. Past research has proposed numerous approaches to tackle this issue based on offline considerations. In this work, a novel approach to mitigate cybersickness is presented based on online adaptive navigation. Considering the Proportional-Integral-Derivative (PID) control method, we proposed a mathematical model for online adaptive navigation parametrized with several parameters, taking as input the users’ electro-dermal activity (EDA), an efficient indicator to measure the cybersickness level, and providing as output adapted navigation accelerations. Therefore, minimizing the cybersickness level is regarded as an argument optimization problem: find the PID model parameters which can reduce the severity of cybersickness. User studies were organized to collect non-adapted navigation accelerations and the corresponding EDA signals. A deep neural network was then formulated to learn the correlation between EDA and navigation accelerations. The hyperparameters of the network were obtained through the Optuna open-source framework. To validate the performance of the optimized online adaptive navigation developed through the PID control, we performed an analysis in a simulated user study based on the pre-trained deep neural network. Results indicate a significant reduction of cybersickness in terms of EDA signal analysis and motion sickness dose value. This is a pioneering work which presented a systematic strategy for adaptive navigation settings from a theoretical point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.empatica.com/research/e4/.

  2. 2.

    One pair of data includes longitudinal and rotational accelerations and the corresponding EDA signal from one user session; one pair can be regarded as one data sample.

References

  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631 (2019). https://doi.org/10.1145/3292500.3330701

  2. Aqajari, S.A.H., Naeini, E.K., Mehrabadi, M.A., Labbaf, S., Rahmani, A.M., Dutt, N.: GSR analysis for stress: development and validation of an open source tool for noisy naturalistic GSR data (1) (2020). http://arxiv.org/abs/2005.01834

  3. Argelaguet, F., Andujar, C.: Automatic speed graph generation for predefined camera paths. In: Lecture Notes in Computer Science, vol. 6133 LNCS, pp. 115–126 (2010). https://doi.org/10.1007/978-3-642-13544-6_11

  4. Aykent, B., Merienne, F., Guillet, C., Paillot, D., Kemeny, A.: Motion sickness evaluation and comparison for a static driving simulator and a dynamic driving simulator. Proc. Institut. Mech. Eng., Part D: J. Automobile Eng. 228(7), 818–829 (2014). https://doi.org/10.1177/0954407013516101

    Article  MATH  Google Scholar 

  5. Benedek, M., Kaernbach, C.: A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 190(1), 80–91 (2010). https://doi.org/10.1016/j.jneumeth.2010.04.028

    Article  Google Scholar 

  6. Bos, J.E., MacKinnon, S.N., Patterson, A.: Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view. Aviat. Space Environ. Med. 76(12), 1111–1118 (2005)

    Google Scholar 

  7. Bos, J.E., de Vries, S.C., van Emmerik, M.L., Groen, E.L.: The effect of internal and external fields of view on visually induced motion sickness. Appl. Ergon. 41(4), 516–521 (2010). https://doi.org/10.1016/j.apergo.2009.11.007

  8. Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Proceedings of the 2014 Conference on Interactive Entertainment - IE2014, pp. 1–9. ACM Press, New York, New York, USA (2014). https://doi.org/10.1145/2677758.2677780

  9. Dennison, M.S., Wisti, A.Z., D’Zmura, M.: Use of physiological signals to predict cybersickness. Displays 44, 42–52 (2016). https://doi.org/10.1016/j.displa.2016.07.002

  10. Du, M., Cui, H., Wang, Y., Duh, H.: Learning from deep stereoscopic attention for simulator sickness prediction. IEEE Trans. Vis. Comput. Graph., 1–1 (2021). https://doi.org/10.1109/TVCG.2021.3115901

  11. Dużmańska, N., Strojny, P., Strojny, A.: Can simulator sickness be avoided? a review on temporal aspects of simulator sickness. Front. Psychol. 9, 2132 (2018). https://doi.org/10.3389/fpsyg.2018.02132

    Article  Google Scholar 

  12. Fernandes, A.S., Feiner, S.K.: Combating VR sickness through subtle dynamic field-of-view modification. In: 2016 IEEE symposium on 3D user interfaces (3DUI), pp. 201–210. IEEE (2016). https://doi.org/10.1109/3DUI.2016.7460053

  13. Freitag, S., Weyers, B., Kuhlen, T.W.: Automatic speed adjustment for travel through immersive virtual environments based on viewpoint quality. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI), pp. 67–70. IEEE (2016). https://doi.org/10.1109/3DUI.2016.7460033

  14. Gamboa, H.: Multi-modal behavioral biometrics based on HCI and electrophysiology. Ph.D. thesis, Universidade Técnica de Lisboa (2008)

    Google Scholar 

  15. Gavgani, A.M., Nesbitt, K.V., Blackmore, K.L., Nalivaiko, E.: Profiling subjective symptoms and autonomic changes associated with cybersickness. Auton. Neurosci. 203, 41–50 (2017). https://doi.org/10.1016/j.autneu.2016.12.004

  16. Golding, J.F.: Phasic skin conductance activity and motion sickness. Aviat. Space Environ. Med. 63(3), 165–171 (1992)

    Google Scholar 

  17. Golding, J.F., Stott, J.R.: Comparison of the effects of a selective muscarinic receptor antagonist and hyoscine (scopolamine) on motion sickness, skin conductance and heart rate. Br. J. Clin. Pharmacol. 43(6), 633–637 (1997). https://doi.org/10.1046/j.1365-2125.1997.00606.x

    Article  Google Scholar 

  18. Hadadi, A., Guillet, C., Chardonnet, J.R., Langovoy, M., Wang, Y., Ovtcharova, J.: Prediction of cybersickness in virtual environments using topological data analysis and machine learning. Front. Virtual Reality 3 (2022). https://doi.org/10.3389/frvir.2022.973236

  19. Hu, P., Sun, Q., Didyk, P., Wei, L.Y., Kaufman, A.E.: Reducing simulator sickness with perceptual camera control. ACM Trans. Graph. (TOG) 38(6), 1–12 (2019). https://doi.org/10.1145/3355089.3356490

    Article  Google Scholar 

  20. Islam, R., Ang, S., Quarles, J.: CyberSense: a closed-loop framework to detect cybersickness severity and adaptively apply reduction techniques. In: 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 148–155. IEEE (2021). https://doi.org/10.1109/VRW52623.2021.00035

  21. Islam, R., Desai, K., Quarles, J.: Cybersickness prediction from integrated HMD’s sensors: a multimodal deep fusion approach using eye-tracking and head-tracking data. In: 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 31–40. IEEE, Bari, Italy (2021). https://doi.org/10.1109/ISMAR52148.2021.00017

  22. Islam, R., et al.: Automatic detection and prediction of cybersickness severity using deep neural networks from user’s physiological signals. In: 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 400–411. IEEE (2020). https://doi.org/10.1109/ISMAR50242.2020.00066

  23. Kaneko, D., Stuldreher, I., Reuten, A.J., Toet, A., van Erp, J.B., Brouwer, A.M.: Comparing explicit and implicit measures for assessing cross-cultural food experience. Front. Neuroergonomics 2, 5 (2021). https://doi.org/10.3389/fnrgo.2021.646280

    Article  Google Scholar 

  24. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)

    Article  Google Scholar 

  25. Keshavarz, B., Hecht, H.: Validating an efficient method to quantify motion sickness. Hum. Fact. J. Hum. Fact. Ergon. Soc. 53(4), 415–426 (2011). https://doi.org/10.1177/0018720811403736

    Article  Google Scholar 

  26. Kilteni, K., Groten, R., Slater, M.: The sense of embodiment in virtual reality. Presence: Teleoperators Virtual Environ. 21(4), 373–387 (2012). https://doi.org/10.1162/PRES_a_00124

  27. Kim, J., Kim, W., Oh, H., Lee, S., Lee, S.: A deep cybersickness predictor based on brain signal analysis for virtual reality contents. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10579–10588. IEEE (2019). https://doi.org/10.1109/ICCV.2019.01068

  28. Kim, K.H., Bang, S.W., Kim, S.R.: Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Compu. 42(3), 419–427 (2004). https://doi.org/10.1007/BF02344719

    Article  Google Scholar 

  29. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1D convolutional neural networks and applications: a survey. Mech. Syst. Signal Process. 151, 107398 (2021). https://doi.org/10.1016/j.ymssp.2020.107398

  30. Koohestani, A., et al.: A knowledge discovery in motion sickness: a comprehensive literature review. IEEE Access 7, 85755–85770 (2019). https://doi.org/10.1109/ACCESS.2019.2922993

    Article  Google Scholar 

  31. Krokos, E., Varshney, A.: Quantifying VR cybersickness using EEG. Virtual Reality 26(1), 77–89 (2022). https://doi.org/10.1007/s10055-021-00517-2

    Article  Google Scholar 

  32. Lee, L.H., et al.: All one needs to know about metaverse: a complete survey on technological singularity, virtual ecosystem, and research agenda (2021). arxiv:2110.05352

  33. Lou, R., Chardonnet, J.R.: Reducing cybersickness by geometry deformation. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 1058–1059. IEEE (2019). https://doi.org/10.1109/VR.2019.8798164

  34. Magaki, T., Vallance, M.: Developing an accessible evaluation method of VR cybersickness. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 1072–1073. IEEE (2019). https://doi.org/10.1109/VR.2019.8797748

  35. Makowski, D., et al.: NeuroKit2: a Python toolbox for neurophysiological signal processing. Behav. Res. Methods 53(4), 1689–1696 (2021). https://doi.org/10.3758/s13428-020-01516-y

    Article  Google Scholar 

  36. Oman, C.M.: Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can. J. Physiol. Pharmacol. 68(2), 294–303 (1990). https://doi.org/10.1139/y90-044

    Article  Google Scholar 

  37. Padmanaban, N., Ruban, T., Sitzmann, V., Norcia, A.M., Wetzstein, G.: Towards a machine-learning approach for sickness prediction in 360 stereoscopic videos. IEEE Trans. Vis. Comput. Graph. 24(4), 1594–1603 (2018). https://doi.org/10.1109/TVCG.2018.2793560

    Article  Google Scholar 

  38. Plouzeau, J., Chardonnet, J.R., Merienne, F.: Using cybersickness indicators to adapt navigation in virtual reality: a pre-study. In: 2018 IEEE conference on virtual reality and 3D user interfaces (VR), pp. 661–662. IEEE (2018). https://doi.org/10.1109/VR.2018.8446192

  39. Sharma, V., Prakash, N.R., Kalra, P.: Audio-video emotional response mapping based upon electrodermal activity. Biomed. Signal Process. Control 47, 324–333 (2019). https://doi.org/10.1016/j.bspc.2018.08.024

    Article  Google Scholar 

  40. So, R.H.: The search for a cybersickness dose value. In: HCI (1), pp. 152–156 (1999)

    Google Scholar 

  41. Wang, L.: PID control system design and automatic tuning using MATLAB/Simulink. John Wiley & Sons (2020)

    Google Scholar 

  42. Wang, Y., Chardonnet, J.R., Merienne, F.: Design of a semiautomatic travel technique in VR environments. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 1223–1224. IEEE, Osaka, Japan (2019). https://doi.org/10.1109/VR.2019.8798004

  43. Wang, Y., Chardonnet, J.R., Merienne, F.: VR sickness prediction for navigation in immersive virtual environments using a deep long short term memory model. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 1874–1881. IEEE, Osaka, Japan (2019). https://doi.org/10.1109/VR.2019.8798213

  44. Wang, Y., Chardonnet, J.R., Merienne, F.: Development of a speed protector to optimize user experience in 3D virtual environments. International Journal of Human-Computer Studies 147, 102578 (dec 2021). https://doi.org/10.1016/j.ijhcs.2020.102578

  45. Wang, Y., Chardonnet, J.R., Merienne, F., Ovtcharova, J.: Using fuzzy logic to involve individual differences for predicting cybersickness during VR navigation. In: 2021 IEEE Virtual Reality and 3D User Interfaces (VR), pp. 373–381. IEEE, Lisbon, Portugal (2021). https://doi.org/10.1109/VR50410.2021.00060

  46. Yang, B., Wei, L., Pu, Z.: Measuring and improving user experience through artificial intelligence-aided design. Front. Psychol., 3000 (2020). https://doi.org/10.3389/fpsyg.2020.595374

  47. Zielasko, D., Meißner, A., Freitag, S., Weyers, B., Kuhlen, T.W.: Dynamic field of view reduction related to subjective sickness measures in an HMD-based data analysis task. In: Proceedings of IEEE VR Workshop on Everyday Virtual Reality (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Chardonnet, JR., Merienne, F. (2024). Modeling Online Adaptive Navigation in Virtual Environments Based on PID Control. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1964. Springer, Singapore. https://doi.org/10.1007/978-981-99-8141-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8141-0_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8140-3

  • Online ISBN: 978-981-99-8141-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics