Skip to main content

S-CGRU: An Efficient Model for Pedestrian Trajectory Prediction

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1964))

Included in the following conference series:

  • 361 Accesses

Abstract

In the development of autonomous driving systems, pedestrian trajectory prediction plays a crucial role. Existing models still face some challenges in capturing the accuracy of complex pedestrian actions in different environments and in handling large-scale data and real-time prediction efficiency. To address this, we have designed a novel Complex Gated Recurrent Unit (CGRU) model, cleverly combining the spatial expressiveness of complex numbers with the efficiency of Gated Recurrent Unit networks to establish a lightweight model. Moreover, we have incorporated a social force model to further develop a Social Complex Gated Recurrent Unit (S-CGRU) model specifically for predicting pedestrian trajectories. To improve computational efficiency, we conducted an in-depth study of the pedestrian’s attention field of view in different environments to optimize the amount of information processed and increase training efficiency. Experimental verification on six public datasets confirms that S-CGRU model significantly outperforms other baseline models not only in prediction accuracy but also in computational efficiency, validating the practical value of our model in pedestrian trajectory prediction.

Z. Xu—First author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

    Google Scholar 

  2. Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1468–1476 (2018)

    Google Scholar 

  3. Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.: Human motion trajectory prediction: a survey. Int. J. Robot. Res. 39(8), 895–935 (2020)

    Article  Google Scholar 

  4. Yue, J., Manocha, D., Wang, H.: Human trajectory prediction via neural social physics. arXiv preprint arXiv:2207.10435 (2022)

  5. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  6. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation (2008)

    Google Scholar 

  7. He, F., Xia, Y., Zhao, X., Wang, H.: Informative scene decomposition for crowd analysis, comparison and simulation guidance. ACM Transaction on Graphics (TOG) 4(39) (2020) 51(5), 4282 (1995)

    Google Scholar 

  8. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  9. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1349–1358 (2019)

    Google Scholar 

  10. Mangalam, K., An, Y., Girase, H., Malik, J.: From goals, waypoints & paths to long term human trajectory forecasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15233–15242 (2021)

    Google Scholar 

  11. Van Toll, W., Pettr’e, J.: Algorithms for microscopic crowd simulation: advancements in the 2010s. Comput. Graph. Forum 40(2), 731–754 (2021)

    Google Scholar 

  12. Wolinski, D., J. Guy, S., Olivier, A.H., Lin, M., Manocha, D., Pettr’e, J.: Parameter estimation and comparative evaluation of crowd simulations. Comput. Graph. Forum 33(2), 303–312 (2014)

    Google Scholar 

  13. He, F., Xia, Y., Zhao, X., Wang, H.: Informative scene decomposition for crowd analysis, comparison and simulation guidance. ACM Trans. Graph. (TOG) 39(4), 50:1–50:13 (2020)

    Google Scholar 

  14. Korbmacher, R., Tordeux, A.: Review of pedestrian trajectory prediction methods: comparing deep learning and knowledge-based approaches. IEEE Trans. Intell. Transp. Syst. 23(12), 24126–24144 (2022)

    Article  Google Scholar 

  15. Bengio, Y., Pal, C.J.: Deep complex networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  16. Nitta, T.: On the critical points of the complex-valued neural network. In: Neural Information Processing (2002)

    Google Scholar 

  17. Hirose, A., Yoshida, S.: Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Trans. Neural Netw. Learn. Syst. 23(4), 541–551 (2012)

    Article  Google Scholar 

  18. Arjovsky, M., Shah, A., Bengio, Y.: Unitary evolution recurrent neural networks. arXiv preprint arXiv:1511.06464 (2015)

  19. Danihelka, I., Wayne, G., Uria, B., Kalchbrenner, N., Graves, A.: Associative long short-term memory. arXiv preprint arXiv:1602.03032 (2016)

  20. Wisdom, S., Powers, T., Hershey, J., Roux, J.L., Atlas, L.: Full-capacity unitary recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 4880–4888 (2016)

    Google Scholar 

  21. Reichert, D.P., Serre, T.: Neuronal synchrony in complex-valued deep networks. arXiv preprint arXiv:1312.6115 (2013)

  22. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep net-works. In: Advances in Neural Information Processing Systems, pp. 2377–2385 (2015)

    Google Scholar 

  23. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: Encoder-decoder approaches. arXiv pre-print arXiv:1409.1259 (2014)

  24. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  26. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  27. Antonini, G., et al.: Discrete choice models of pedestrian walking behavior. Transport. Res. B 40(8), 667–687 (2006)

    Article  Google Scholar 

  28. Bahdanau, D., et al.: Neural machine translation by jointly learning to align and trans-late. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  29. Lerner, A., et al.: Crowds by example. Comput. Graphics Forum. 26, 655–664 (2007)

    Article  Google Scholar 

  30. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 51(5), 4282 (1995)

    Google Scholar 

  31. Yi, S., Li, H., Wang, X.: Understanding pedestrian behaviors from stationary crowd groups. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition (CVPR), pp. 3488–3496 (2015)

    Google Scholar 

  32. Xue, H., Huynh, D.Q., Reynolds, M.: SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1186–1194 (2018)

    Google Scholar 

  33. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (2014)

    Google Scholar 

  34. Mohamed, A., Qian, K., Elhoseiny, M., Claudel, C.: Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  35. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory understanding in crowded scenes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_33

    Chapter  Google Scholar 

  36. Pellegrini, S., Ess, A., Van Gool, L.: Improving data association by joint modeling of pedestrian trajectories and groupings. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 452–465. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_33

    Chapter  Google Scholar 

  37. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Computer graphics forum. vol. 26, pp. 655–664. Wiley Online Library (2007)

    Google Scholar 

  38. Tang, H., Wei, P., Li, J., Zheng, N.: EvoSTGAT: evolving spatio-temporal graph attention networks for pedestrian trajectory prediction. Neurocomputing 491, 333–342 (2022)

    Article  Google Scholar 

  39. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1349–1358 (2019)

    Google Scholar 

  40. Danihelka, I., Wayne, G., Uria, B., Kalchbrenner, N., Graves, A.: Associative long short-term memory. In: Proceedings of The 33rd International Conference on Machine Learning (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61562082), the Joint Funds of the National Natural Science Foundation of China (U1603262), and the “Intelligent Information R &D Cross-disciplinary Project” (Project Number: 202104140010). We thank all anonymous commenters for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Yu, Q., Slamu, W., Zhou, Y., Liu, Z. (2024). S-CGRU: An Efficient Model for Pedestrian Trajectory Prediction. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1964. Springer, Singapore. https://doi.org/10.1007/978-981-99-8141-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8141-0_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8140-3

  • Online ISBN: 978-981-99-8141-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics