Skip to main content

Heterogeneous Graph Prototypical Networks for Few-Shot Node Classification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1962))

Included in the following conference series:

  • 417 Accesses

Abstract

The node classification task is one of the most significant applications in heterogeneous graph analysis, which is widely used for modeling multi-typed interactions. Meanwhile, Graph Neural Networks (GNNs) have aroused wide interest due to their remarkable effects on graph node classification. However, there are some challenges when applying GNNs to heterogeneous graph node classification: the cumbersome node labeling cost, and the heterogeneity of graphs. Existing GNNs require sufficient annotation while learning classifiers independently with node embeddings cannot exploit graph topology effectively. Recently, few-shot learning has achieved competitive results in homogeneous graphs to address the performance degradation in the label sparsity case. While heterogeneous graph few-shot learning is limited by the difficulties of extracting multiple semantics. To this end, we propose a novel Heterogeneous graph Prototypical Network (HPN) with two modules: Graph structural module generates node embeddings and semantics for meta-training by capturing heterogeneous structures. Meta-learning module produces prototypes with heterogeneous induced subgraphs for meta-training classes, which improves knowledge utilization compared with the traditional meta-learning. Experimental results on three real-world heterogeneous graphs demonstrate that HPN achieves outstanding performance and better stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.aminer.cn/citation.

  2. 2.

    https://grouplens.org/datasets/hetrec-2011/.

  3. 3.

    https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding.

References

  1. Allen, K., Shelhamer, E., Shin, H., Tenenbaum, J.: Infinite mixture prototypes for few-shot learning. In: International Conference on Machine Learning, pp. 232–241. PMLR (2019)

    Google Scholar 

  2. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Aggarwal, C. (ed.) Social Network Data Analytics, Springer, Boston, MA (2011). https://doi.org/10.1007/978-1-4419-8462-3_5

  3. Bianchini, M., Gori, M., Scarselli, F.: Inside pagerank. ACM Trans. Internet Technol. (TOIT) 5(1), 92–128 (2005)

    Article  Google Scholar 

  4. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J., Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21(suppl_1), i47–i56 (2005)

    Google Scholar 

  5. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900 (2015)

    Google Scholar 

  6. Chauhan, J., Nathani, D., Kaul, M.: Few-shot learning on graphs via super-classes based on graph spectral measures. arXiv preprint arXiv:2002.12815 (2020)

  7. Ding, K., Wang, J., Li, J., Shu, K., Liu, C., Liu, H.: Graph prototypical networks for few-shot learning on attributed networks. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 295–304 (2020)

    Google Scholar 

  8. Dong, Y., Chawla, N.V., Swami, A.: Metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

    Google Scholar 

  9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  10. Fu, T.V., Lee, W.C., Lei, Z.: Hin2vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1797–1806 (2017)

    Google Scholar 

  11. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  12. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  13. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: Proceedings of The Web Conference 2020, pp. 2704–2710 (2020)

    Google Scholar 

  14. Huang, K., Zitnik, M.: Graph meta learning via local subgraphs. Adv. Neural. Inf. Process. Syst. 33, 5862–5874 (2020)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  16. Lan, L., Wang, P., Du, X., Song, K., Tao, J., Guan, X.: Node classification on graphs with few-shot novel labels via meta transformed network embedding. arXiv preprint arXiv:2007.02914 (2020)

  17. Liu, Z., Fang, Y., Liu, C., Hoi, S.C.: Relative and absolute location embedding for few-shot node classification on graph

    Google Scholar 

  18. Lu, Y., Fang, Y., Shi, C.: Meta-learning on heterogeneous information networks for cold-start recommendation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 1563–1573 (2020)

    Google Scholar 

  19. Munkhdalai, T., Yu, H.: Meta networks. In: International Conference on Machine Learning. pp. 2554–2563. PMLR (2017)

    Google Scholar 

  20. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning (2016)

    Google Scholar 

  21. Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2018)

    Article  Google Scholar 

  22. Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2016)

    Article  Google Scholar 

  23. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. arXiv preprint arXiv:1703.05175 (2017)

  24. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1199–1208 (2018)

    Google Scholar 

  25. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web. pp. 1067–1077 (2015)

    Google Scholar 

  26. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  27. Wang, N., Luo, M., Ding, K., Zhang, L., Li, J., Zheng, Q.: Graph few-shot learning with attribute matching. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. pp. 1545–1554 (2020)

    Google Scholar 

  28. Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S.: Heterogeneous graph attention network. In: The World Wide Web Conference. pp. 2022–2032 (2019)

    Google Scholar 

  29. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv. 53(3) (Jun 2020)

    Google Scholar 

  30. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems (2020)

    Google Scholar 

  31. Yang, Y., Guan, Z., Li, J., Huang, J., Zhao, W.: Interpretable and efficient heterogeneous graph convolutional network. arXiv preprint arXiv:2005.13183 (2020)

  32. Yoon, S.W., Seo, J., Moon, J.: Tapnet: Neural network augmented with task-adaptive projection for few-shot learning. In: International Conference on Machine Learning. pp. 7115–7123. PMLR (2019)

    Google Scholar 

  33. Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer networks. In: Advances in Neural Information Processing Systems. pp. 11983–11993 (2019)

    Google Scholar 

  34. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 793–803 (2019)

    Google Scholar 

  35. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: A survey. IEEE transactions on Big Data 6(1), 3–28 (2018)

    Article  Google Scholar 

  36. Zhang, Q., Wu, X., Yang, Q., Zhang, C., Zhang, X.: HG-Meta: Graph Meta-learning over Heterogeneous Graphs, pp. 397–405

    Google Scholar 

  37. Zhang, S., Zhou, Z., Huang, Z., Wei, Z.: Few-shot classification on graphs with structural regularized gcns (2018)

    Google Scholar 

  38. Zhou, F., Cao, C., Zhang, K., Trajcevski, G., Zhong, T., Geng, J.: Meta-gnn: On few-shot node classification in graph meta-learning. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 2357–2360 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is funded by the National Key Research and Development Project (Grant No: 2022YFB2703100), the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (Grant No. SN-ZJU-SIAS-001), the Fundamental Research Funds for the Central Universities (2021FZZX001-23, 226-2023-00048), Shanghai Institute for Advanced Study of Zhejiang University, and ZJU-Bangsun Joint Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunzhi Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, Y. et al. (2024). Heterogeneous Graph Prototypical Networks for Few-Shot Node Classification. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1962. Springer, Singapore. https://doi.org/10.1007/978-981-99-8132-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8132-8_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8131-1

  • Online ISBN: 978-981-99-8132-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics