Skip to main content

Increasing Reproducibility in Science by Interlinking Semantic Artifact Descriptions in a Knowledge Graph

  • Conference paper
  • First Online:
Leveraging Generative Intelligence in Digital Libraries: Towards Human-Machine Collaboration (ICADL 2023)

Abstract

One of the pillars of the scientific method is reproducibility – the ability to replicate the results of a prior study if the same procedures are followed. A lack of reproducibility can lead to wasted resources, false conclusions, and a loss of public trust in science. Ensuring reproducibility is challenging due to the heterogeneity of the methods used in different fields of science. In this article, we present an approach for increasing the reproducibility of research results, by semantically describing and interlinking relevant artifacts such as data, software scripts or simulations in a knowledge graph. In order to ensure the flexibility to adapt the approach to different fields of science, we devise a template model, which allows defining typical descriptions required to increase reproducibility of a certain type of study. We provide a scoring model for gradually assessing the reproducibility of a certain study based on the templates and provide a knowledge graph infrastructure for curating reproducibility descriptions along with semantic research contribution descriptions. We demonstrate the feasibility of our approach with an example in data science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://orkg.org/.

  2. 2.

    https://orkg.org/comparison/R589387/.

  3. 3.

    https://orkg.org/comparison/R589371/.

  4. 4.

    https://www.dartstatement.org/2012-apsa-ethics-guide-changes.

  5. 5.

    https://www.w3.org/.

  6. 6.

    https://www.w3.org/standards/semanticweb/data.

  7. 7.

    https://paperswithcode.com/about.

  8. 8.

    https://orkg.org/template/R107801.

  9. 9.

    https://orkg.org/paper/R478126.

  10. 10.

    https://gitlab.com/TIBHannover/orkg/orkg-frontend/-/merge_requests/1015.

References

  1. Estimating the reproducibility of psychological science. Science 349(6251), aac4716 (2015). https://doi.org/10.1126/science.aac4716, https://www.science.org/doi/abs/10.1126/science.aac4716

  2. Buys, C.M., Shaw, P.L.: Data management practices across an institution: survey and report. 3(2), 1225 (2015). https://doi.org/10.7710/2162-3309.1225

  3. Chang, A.C., Li, P.: Is economics research replicable? Sixty published papers from thirteen journals say “usually not” (2015). https://shorturl.at/jlpxQ

  4. Chen, X.: Open is not enough. Nat. Phys. 15, 7 (2019)

    Google Scholar 

  5. Dewald, W.G., Thursby, J.G., Anderson, R.G.: Replication in empirical economics: the journal of money, credit and banking project. 76(4), 587–603 (1986). https://www.jstor.org/stable/1806061

  6. Feger, S.S., Dallmeier-Tiessen, S., Woźniak, P.W., Schmidt, A.: The role of HCI in reproducible science: understanding, supporting and motivating core practices. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, CHI EA 2019, pp. 1–6. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3290607.3312905

  7. Feger, S.S.: Interactive tools for reproducible science - understanding, supporting, and motivating reproducible science practices, p. 221 (2020)

    Google Scholar 

  8. Feger, S.S., Woźniak, P.W.: Reproducibility: a researcher-centered definition. 6(2), 17 (2022). https://doi.org/10.3390/mti6020017, https://www.mdpi.com/2414-4088/6/2/17

  9. Figueiredo Filho, D., Lins, R., Domingos, A., Janz, N., Silva, L.: Seven reasons why: a user’s guide to transparency and reproducibility. 13(2), e0001 (2019). https://doi.org/10.1590/1981-3821201900020001, http://www.scielo.br/scielo.php?script=sci_arttext &pid=S1981-38212019000200400 &tlng=en

  10. Freese, J., Peterson, D.: Replication in social science. Annu. Rev. Sociol. 43(1), 147–165 (2017). https://doi.org/10.1146/annurev-soc-060116-053450

  11. Goodman, S.N., Fanelli, D., Ioannidis, J.P.A.: What does research reproducibility mean? Sci. Transl. Med. 8(341), 341ps12–341ps12 (2016). https://doi.org/10.1126/scitranslmed.aaf5027, https://www.science.org/doi/abs/10.1126/scitranslmed.aaf5027

  12. Howison, J., Herbsleb, J.D.: Scientific software production: incentives and collaboration. In: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, CSCW 2011, pp. 513–522. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/1958824.1958904

  13. Hoy, M.B.: Big data: an introduction for librarians. Med. Reference Serv. Q. 33(3), 320–326 (2014). https://doi.org/10.1080/02763869.2014.925709. pMID: 25023020

  14. Hussein, H., Oelen, A., Karras, O., Auer, S.: KGMM - a maturity model for scholarly knowledge graphs based on intertwined human-machine collaboration. In: Tseng, Y.H., Katsurai, M., Nguyen, H.N. (eds.) ICADL 2022. LNCS, vol. 13636, pp. 253–269. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21756-2_21

    Chapter  Google Scholar 

  15. Key, E.M.: How are we doing? Data access and replication in political science. PS: Polit. Sci. Polit. 49(2), 268–272 (2016). https://doi.org/10.1017/S1049096516000184

    Article  Google Scholar 

  16. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C Candidate Recommendation 11(8) (2017)

    Google Scholar 

  17. Krawczyk, M., Reuben, E.: (Un)available upon request: field experiment on researchers’ willingness to share supplementary materials. 19(3), 175–186 (2012). https://doi.org/10.1080/08989621.2012.678688

  18. Leek, J.T., Peng, R.D.: Reproducible research can still be wrong: adopting a prevention approach. Proc. Natl. Acad. Sci. 112(6), 1645–1646 (2015). https://doi.org/10.1073/pnas.1421412111, https://www.pnas.org/doi/abs/10.1073/pnas.1421412111

  19. Lucas, J.W., Morrell, K., Posard, M.: Considerations on the ‘replication problem’ in sociology. 44(2), 217–232 (2013). https://doi.org/10.1007/s12108-013-9176-7

  20. Markowetz, F.: Five selfish reasons to work reproducibly. 16(1), 274 (2015). https://doi.org/10.1186/s13059-015-0850-7

  21. Munafò, M.R., et al.: A manifesto for reproducible science. 1, 0021 (2017). https://doi.org/10.1038/s41562-016-0021

  22. Nosek, B.A., et al.: Promoting an open research culture. Science 348(6242), 1422–1425 (2015). https://doi.org/10.1126/science.aab2374, https://www.science.org/doi/abs/10.1126/science.aab2374

  23. Peng, R.D.: Reproducible research in computational science. 334(6060), 1226–1227 (2011). https://doi.org/10.1126/science.1213847

  24. Savage, C.J., Vickers, A.J.: Empirical study of data sharing by authors publishing in PLoS journals. 4(9) (2009). https://doi.org/10.1371/journal.pone.0007078, https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007078

  25. Stocker, M., et al.: FAIR scientific information with the open research knowledge graph. 1(1), 19–21 (2023). https://doi.org/10.3233/FC-221513, https://content.iospress.com/articles/fair-connect/fc221513

  26. Vines, T.H., et al.: The availability of research data declines rapidly with article age. 24(1), 94–97 (2014). https://doi.org/10.1016/j.cub.2013.11.014, https://www.cell.com/current-biology/abstract/S0960-9822(13)01400-0, publisher: Elsevier

  27. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 1–9 (2016). https://doi.org/10.1038/sdata.2016.18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hussein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hussein, H., Farfar, K.E., Oelen, A., Karras, O., Auer, S. (2023). Increasing Reproducibility in Science by Interlinking Semantic Artifact Descriptions in a Knowledge Graph. In: Goh, D.H., Chen, SJ., Tuarob, S. (eds) Leveraging Generative Intelligence in Digital Libraries: Towards Human-Machine Collaboration. ICADL 2023. Lecture Notes in Computer Science, vol 14458. Springer, Singapore. https://doi.org/10.1007/978-981-99-8088-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8088-8_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8087-1

  • Online ISBN: 978-981-99-8088-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics